Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 3271, 2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36841864

ABSTRACT

By first-principles total-energy calculations, we investigated the thermodynamic stability of the MAX solid solution MoxV4-xAlC3 in the 0 ≤ x ≤ 4 range. Results evidence that lattice parameter a increases as a function of Mo content, while the c parameter reaches its maximum expansion at x = 2.5. After that, a contraction is noticed. Mo occupies VI sites randomly until the out-of-plane ordered Mo2V2AlC3 alloy is formed. We employed the Defect Formation Energy (DFE) formalism to evaluate the thermodynamic stability of the alloys. Calculations show five stable compounds. At V-rich conditions and from Mo-rich to Mo-moderated conditions, the pristine V4AlC3 MAX is stable. In the region of V-poor conditions, from Mo-rich to Mo-moderated growth conditions, the solid solutions with x = 0.5, 1, and 1.5 and the o-MAX Mo2V2AlC3 are thermodynamically stable. The line profiles of the Electron Localization Function and Bader charge analysis show that the V-C interaction is mainly ionic, while the Mo-C is covalent. Also, the exfoliation energy to obtain a MXene layer is ~ 0.4 eV/Å2. DFE also shows that MXenes exfoliated from the MAX phase with the same Mo content and atomic arrangement are thermodynamically stable. Our results get a deeper atomic scale understanding of the previously reported experimental evidence.

2.
Sci Rep ; 11(1): 12393, 2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34117283

ABSTRACT

In this work, we demonstrate, through first-principles calculations, the existence of a new family of copper-based MXenes. These add up new structures to the previously reported universe and span the interest of such 2D materials for applications in heterogeneous catalysis, ion-based batteries, sensors, biomedical applications, and so on. First, we propose the MXene-like structures: Cu2N, Cu2C, and Cu2O. Phonon spectra calculations confirmed their dynamical stability by showing just positive frequencies all through the 2D Brillouin zone. The new MXenes family displays metallic characteristics, mainly induced by the Cu-3d orbitals. Bader charge analysis and charge density differences depict bonds with ionic character in which Cu is positively charged, and the non-metal atom gets an anionic character. Also, we investigate the functionalization of the proposed structures with Cl, F, O, and OH groups. Results show that the H3 site is the most favorable for functionalization. In all cases, the non-magnetic nature and metallic properties of the pristine MXenes remain. Our results lay the foundations for the experimental realization of a new MXenes family.

SELECTION OF CITATIONS
SEARCH DETAIL
...