Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Cell Mol Life Sci ; 80(9): 273, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37646974

ABSTRACT

ISG20L2, a 3' to 5' exoribonuclease previously associated with ribosome biogenesis, is identified here in activated T cells as an enzyme with a preferential affinity for uridylated miRNA substrates. This enzyme is upregulated in T lymphocytes upon TCR and IFN type I stimulation and appears to be involved in regulating T cell function. ISG20L2 silencing leads to an increased basal expression of CD69 and induces greater IL2 secretion. However, ISG20L2 absence impairs CD25 upregulation, CD3 synaptic accumulation and MTOC translocation towards the antigen-presenting cell during immune synapsis. Remarkably, ISG20L2 controls the expression of immunoregulatory molecules, such as AHR, NKG2D, CTLA-4, CD137, TIM-3, PD-L1 or PD-1, which show increased levels in ISG20L2 knockout T cells. The dysregulation observed in these key molecules for T cell responses support a role for this exonuclease as a novel RNA-based regulator of T cell function.


Subject(s)
Lymphocyte Activation , MicroRNAs , Antigen-Presenting Cells , Endonucleases , MicroRNAs/genetics , Humans
2.
Nature ; 620(7975): 881-889, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37558878

ABSTRACT

Dendritic cells (DCs) have a role in the development and activation of self-reactive pathogenic T cells1,2. Genetic variants that are associated with the function of DCs have been linked to autoimmune disorders3,4, and DCs are therefore attractive therapeutic targets for such diseases. However, developing DC-targeted therapies for autoimmunity requires identification of the mechanisms that regulate DC function. Here, using single-cell and bulk transcriptional and metabolic analyses in combination with cell-specific gene perturbation studies, we identify a regulatory loop of negative feedback that operates in DCs to limit immunopathology. Specifically, we find that lactate, produced by activated DCs and other immune cells, boosts the expression of NDUFA4L2 through a mechanism mediated by hypoxia-inducible factor 1α (HIF-1α). NDUFA4L2 limits the production of mitochondrial reactive oxygen species that activate XBP1-driven transcriptional modules in DCs that are involved in the control of pathogenic autoimmune T cells. We also engineer a probiotic that produces lactate and suppresses T cell autoimmunity through the activation of HIF-1α-NDUFA4L2 signalling in DCs. In summary, we identify an immunometabolic pathway that regulates DC function, and develop a synthetic probiotic for its therapeutic activation.


Subject(s)
Autoimmune Diseases , Central Nervous System , Dendritic Cells , Hypoxia-Inducible Factor 1, alpha Subunit , Lactic Acid , Humans , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Autoimmune Diseases/prevention & control , Autoimmunity , Central Nervous System/cytology , Central Nervous System/immunology , Central Nervous System/pathology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/chemistry , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lactic Acid/metabolism , Probiotics/therapeutic use , Reactive Oxygen Species/metabolism , T-Lymphocytes/immunology , Feedback, Physiological , Lactase/genetics , Lactase/metabolism , Single-Cell Analysis
3.
bioRxiv ; 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36993446

ABSTRACT

Dendritic cells (DCs) control the generation of self-reactive pathogenic T cells. Thus, DCs are considered attractive therapeutic targets for autoimmune diseases. Using single-cell and bulk transcriptional and metabolic analyses in combination with cell-specific gene perturbation studies we identified a negative feedback regulatory pathway that operates in DCs to limit immunopathology. Specifically, we found that lactate, produced by activated DCs and other immune cells, boosts NDUFA4L2 expression through a mechanism mediated by HIF-1α. NDUFA4L2 limits the production of mitochondrial reactive oxygen species that activate XBP1-driven transcriptional modules in DCs involved in the control of pathogenic autoimmune T cells. Moreover, we engineered a probiotic that produces lactate and suppresses T-cell autoimmunity in the central nervous system via the activation of HIF-1α/NDUFA4L2 signaling in DCs. In summary, we identified an immunometabolic pathway that regulates DC function, and developed a synthetic probiotic for its therapeutic activation.

4.
Nature ; 611(7937): 801-809, 2022 11.
Article in English | MEDLINE | ID: mdl-36266581

ABSTRACT

Genome-wide association studies have identified risk loci linked to inflammatory bowel disease (IBD)1-a complex chronic inflammatory disorder of the gastrointestinal tract. The increasing prevalence of IBD in industrialized countries and the augmented disease risk observed in migrants who move into areas of higher disease prevalence suggest that environmental factors are also important determinants of IBD susceptibility and severity2. However, the identification of environmental factors relevant to IBD and the mechanisms by which they influence disease has been hampered by the lack of platforms for their systematic investigation. Here we describe an integrated systems approach, combining publicly available databases, zebrafish chemical screens, machine learning and mouse preclinical models to identify environmental factors that control intestinal inflammation. This approach established that the herbicide propyzamide increases inflammation in the small and large intestine. Moreover, we show that an AHR-NF-κB-C/EBPß signalling axis operates in T cells and dendritic cells to promote intestinal inflammation, and is targeted by propyzamide. In conclusion, we developed a pipeline for the identification of environmental factors and mechanisms of pathogenesis in IBD and, potentially, other inflammatory diseases.


Subject(s)
Environment , Herbicides , Inflammation , Inflammatory Bowel Diseases , Intestines , Animals , Mice , Inflammation/chemically induced , Inflammation/etiology , Inflammation/immunology , Inflammation/pathology , Inflammatory Bowel Diseases/chemically induced , Inflammatory Bowel Diseases/etiology , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/pathology , Zebrafish , Machine Learning , Databases, Factual , Disease Models, Animal , Intestines/drug effects , Intestines/immunology , Intestines/metabolism , Intestines/pathology , NF-kappa B , CCAAT-Enhancer-Binding Protein-beta , Receptors, Aryl Hydrocarbon , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Dendritic Cells/drug effects , Dendritic Cells/immunology , Dendritic Cells/metabolism , Herbicides/adverse effects
5.
STAR Protoc ; 3(1): 101033, 2022 03 18.
Article in English | MEDLINE | ID: mdl-34977679

ABSTRACT

Robust protocols are required to investigate in vitro the molecular mechanisms that control astrocyte metabolism and pro-inflammatory activities. In the present protocol, we describe step by step the isolation and culture of primary murine astrocytes from neonatal brains, followed by their genetic manipulation with siRNA. We further describe cytokine activation of the cultured astrocytes for the analysis of their pro-inflammatory responses, and the oxygen consumption analysis to assess their metabolic function. For complete details on the use and execution of this protocol, please refer to Chao et al. (2019), Clark et al. (2021), and Rothhammer et al. (2018).


Subject(s)
Astrocytes , Brain , Animals , Astrocytes/metabolism , Brain/metabolism , Mice , Oxygen Consumption
6.
Nat Med ; 27(7): 1212-1222, 2021 07.
Article in English | MEDLINE | ID: mdl-34183837

ABSTRACT

Inflammatory bowel disease (IBD) is a complex chronic inflammatory disorder of the gastrointestinal tract. Extracellular adenosine triphosphate (eATP) produced by the commensal microbiota and host cells activates purinergic signaling, promoting intestinal inflammation and pathology. Based on the role of eATP in intestinal inflammation, we developed yeast-based engineered probiotics that express a human P2Y2 purinergic receptor with up to a 1,000-fold increase in eATP sensitivity. We linked the activation of this engineered P2Y2 receptor to the secretion of the ATP-degrading enzyme apyrase, thus creating engineered yeast probiotics capable of sensing a pro-inflammatory molecule and generating a proportional self-regulated response aimed at its neutralization. These self-tunable yeast probiotics suppressed intestinal inflammation in mouse models of IBD, reducing intestinal fibrosis and dysbiosis with an efficacy similar to or higher than that of standard-of-care therapies usually associated with notable adverse events. By combining directed evolution and synthetic gene circuits, we developed a unique self-modulatory platform for the treatment of IBD and potentially other inflammation-driven pathologies.


Subject(s)
Adenosine Triphosphate/metabolism , Apyrase/metabolism , Inflammatory Bowel Diseases/therapy , Probiotics/therapeutic use , Receptors, Purinergic P2Y2/metabolism , Saccharomyces cerevisiae/metabolism , Animals , Apyrase/genetics , CRISPR-Cas Systems/genetics , Disease Models, Animal , Dysbiosis/prevention & control , Female , Fibrosis/prevention & control , Gastrointestinal Microbiome/physiology , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/pathology , Humans , Inflammatory Bowel Diseases/pathology , Male , Mice , Mice, Inbred C57BL , Receptors, Purinergic P2Y2/genetics , Saccharomyces cerevisiae/genetics
7.
Science ; 372(6540)2021 04 23.
Article in English | MEDLINE | ID: mdl-33888612

ABSTRACT

Cell-cell interactions control the physiology and pathology of the central nervous system (CNS). To study astrocyte cell interactions in vivo, we developed rabies barcode interaction detection followed by sequencing (RABID-seq), which combines barcoded viral tracing and single-cell RNA sequencing (scRNA-seq). Using RABID-seq, we identified axon guidance molecules as candidate mediators of microglia-astrocyte interactions that promote CNS pathology in experimental autoimmune encephalomyelitis (EAE) and, potentially, multiple sclerosis (MS). In vivo cell-specific genetic perturbation EAE studies, in vitro systems, and the analysis of MS scRNA-seq datasets and CNS tissue established that Sema4D and Ephrin-B3 expressed in microglia control astrocyte responses via PlexinB2 and EphB3, respectively. Furthermore, a CNS-penetrant EphB3 inhibitor suppressed astrocyte and microglia proinflammatory responses and ameliorated EAE. In summary, RABID-seq identified microglia-astrocyte interactions and candidate therapeutic targets.


Subject(s)
Astrocytes/physiology , Cell Communication , Central Nervous System/pathology , Encephalomyelitis, Autoimmune, Experimental/physiopathology , Microglia/physiology , Multiple Sclerosis/physiopathology , Single-Cell Analysis , Animals , Antigens, CD/metabolism , Brain/pathology , Brain/physiopathology , Central Nervous System/physiopathology , Encephalomyelitis, Autoimmune, Experimental/pathology , Ephrin-B3/metabolism , Herpesvirus 1, Suid/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Multiple Sclerosis/pathology , NF-kappa B/metabolism , Nerve Tissue Proteins/metabolism , RNA-Seq , Reactive Oxygen Species/metabolism , Receptor, EphB3/antagonists & inhibitors , Receptor, EphB3/metabolism , Receptors, Cell Surface/metabolism , Semaphorins/metabolism , Signal Transduction , T-Lymphocytes/physiology , TOR Serine-Threonine Kinases/metabolism
8.
Nature ; 590(7846): 473-479, 2021 02.
Article in English | MEDLINE | ID: mdl-33408417

ABSTRACT

Astrocytes are glial cells that are abundant in the central nervous system (CNS) and that have important homeostatic and disease-promoting functions1. However, little is known about the homeostatic anti-inflammatory activities of astrocytes and their regulation. Here, using high-throughput flow cytometry screening, single-cell RNA sequencing and CRISPR-Cas9-based cell-specific in vivo genetic perturbations in mice, we identify a subset of astrocytes that expresses the lysosomal protein LAMP12 and the death receptor ligand TRAIL3. LAMP1+TRAIL+ astrocytes limit inflammation in the CNS by inducing T cell apoptosis through TRAIL-DR5 signalling. In homeostatic conditions, the expression of TRAIL in astrocytes is driven by interferon-γ (IFNγ) produced by meningeal natural killer (NK) cells, in which IFNγ expression is modulated by the gut microbiome. TRAIL expression in astrocytes is repressed by molecules produced by T cells and microglia in the context of inflammation. Altogether, we show that LAMP1+TRAIL+ astrocytes limit CNS inflammation by inducing T cell apoptosis, and that this astrocyte subset is maintained by meningeal IFNγ+ NK cells that are licensed by the microbiome.


Subject(s)
Astrocytes/immunology , Gastrointestinal Microbiome/immunology , Inflammation/prevention & control , Interferon-gamma/immunology , Killer Cells, Natural/immunology , Lysosomal Membrane Proteins/metabolism , TNF-Related Apoptosis-Inducing Ligand/metabolism , Animals , Apoptosis , Astrocytes/metabolism , Biomarkers , Central Nervous System/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/prevention & control , Female , Homeostasis , Humans , Inflammation/immunology , Meninges/cytology , Meninges/immunology , Mice , Mice, Inbred C57BL , T-Lymphocytes/cytology , T-Lymphocytes/immunology
10.
Nat Neurosci ; 23(8): 939-951, 2020 08.
Article in English | MEDLINE | ID: mdl-32690969

ABSTRACT

Zika virus (ZIKV) is a flavivirus linked to multiple birth defects including microcephaly, known as congenital ZIKV syndrome. The identification of host factors involved in ZIKV replication may guide efficacious therapeutic interventions. In genome-wide transcriptional studies, we found that ZIKV infection triggers aryl hydrocarbon receptor (AHR) activation. Specifically, ZIKV infection induces kynurenine (Kyn) production, which activates AHR, limiting the production of type I interferons (IFN-I) involved in antiviral immunity. Moreover, ZIKV-triggered AHR activation suppresses intrinsic immunity driven by the promyelocytic leukemia (PML) protein, which limits ZIKV replication. AHR inhibition suppressed the replication of multiple ZIKV strains in vitro and also suppressed replication of the related flavivirus dengue. Finally, AHR inhibition with a nanoparticle-delivered AHR antagonist or an inhibitor developed for human use limited ZIKV replication and ameliorated newborn microcephaly in a murine model. In summary, we identified AHR as a host factor for ZIKV replication and PML protein as a driver of anti-ZIKV intrinsic immunity.


Subject(s)
Receptors, Aryl Hydrocarbon/metabolism , Virus Replication , Zika Virus/metabolism , Animals , Chlorocebus aethiops , Hep G2 Cells , Humans , Vero Cells , Zika Virus Infection/metabolism
11.
EMBO Rep ; 21(4): e48925, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32073750

ABSTRACT

Intercellular communication orchestrates effective immune responses against disease-causing agents. Extracellular vesicles (EVs) are potent mediators of cell-cell communication. EVs carry bioactive molecules, including microRNAs, which modulate gene expression and function in the recipient cell. Here, we show that formation of cognate primary T-B lymphocyte immune contacts promotes transfer of a very restricted set of T-cell EV-microRNAs (mmu-miR20-a-5p, mmu-miR-25-3p, and mmu-miR-155-3p) to the B cell. Transferred EV-microRNAs target key genes that control B-cell function, including pro-apoptotic BIM and the cell cycle regulator PTEN. EV-microRNAs transferred during T-B cognate interactions also promote survival, proliferation, and antibody class switching. Using mouse chimeras with Rab27KO EV-deficient T cells, we demonstrate that the transfer of small EVs is required for germinal center reaction and antibody production in vivo, revealing a mechanism that controls B-cell responses via the transfer of EV-microRNAs of T-cell origin. These findings also provide mechanistic insight into the Griscelli syndrome, associated with a mutation in the Rab27a gene, and might explain antibody defects observed in this pathogenesis and other immune-related and inflammatory disorders.


Subject(s)
Extracellular Vesicles , MicroRNAs , Animals , Antibody Formation , Cell Communication , Germinal Center , Mice , MicroRNAs/genetics
12.
Cell ; 179(7): 1483-1498.e22, 2019 12 12.
Article in English | MEDLINE | ID: mdl-31813625

ABSTRACT

Metabolism has been shown to control peripheral immunity, but little is known about its role in central nervous system (CNS) inflammation. Through a combination of proteomic, metabolomic, transcriptomic, and perturbation studies, we found that sphingolipid metabolism in astrocytes triggers the interaction of the C2 domain in cytosolic phospholipase A2 (cPLA2) with the CARD domain in mitochondrial antiviral signaling protein (MAVS), boosting NF-κB-driven transcriptional programs that promote CNS inflammation in experimental autoimmune encephalomyelitis (EAE) and, potentially, multiple sclerosis. cPLA2 recruitment to MAVS also disrupts MAVS-hexokinase 2 (HK2) interactions, decreasing HK enzymatic activity and the production of lactate involved in the metabolic support of neurons. Miglustat, a drug used to treat Gaucher and Niemann-Pick disease, suppresses astrocyte pathogenic activities and ameliorates EAE. Collectively, these findings define a novel immunometabolic mechanism that drives pro-inflammatory astrocyte activities, outlines a new role for MAVS in CNS inflammation, and identifies candidate targets for therapeutic intervention.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Astrocytes/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Phospholipases A2, Secretory/metabolism , 1-Deoxynojirimycin/analogs & derivatives , 1-Deoxynojirimycin/pharmacology , 1-Deoxynojirimycin/therapeutic use , Adaptor Proteins, Signal Transducing/genetics , Animals , Astrocytes/drug effects , Astrocytes/pathology , Brain/metabolism , Brain/pathology , Cells, Cultured , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Female , Hexokinase/metabolism , Humans , Lactic Acid/metabolism , Male , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Phospholipases A2, Secretory/genetics
14.
Nat Neurosci ; 22(5): 729-740, 2019 05.
Article in English | MEDLINE | ID: mdl-30962630

ABSTRACT

Tumor-associated macrophages (TAMs) play an important role in the immune response to cancer, but the mechanisms by which the tumor microenvironment controls TAMs and T cell immunity are not completely understood. Here we report that kynurenine produced by glioblastoma cells activates aryl hydrocarbon receptor (AHR) in TAMs to modulate their function and T cell immunity. AHR promotes CCR2 expression, driving TAM recruitment in response to CCL2. AHR also drives the expression of KLF4 and suppresses NF-κB activation in TAMs. Finally, AHR drives the expression of the ectonucleotidase CD39 in TAMs, which promotes CD8+ T cell dysfunction by producing adenosine in cooperation with CD73. In humans, the expression of AHR and CD39 was highest in grade 4 glioma, and high AHR expression was associated with poor prognosis. In summary, AHR and CD39 expressed in TAMs participate in the regulation of the immune response in glioblastoma and constitute potential targets for immunotherapy.


Subject(s)
Antigens, CD/metabolism , Apyrase/metabolism , Brain Neoplasms/immunology , Glioblastoma/immunology , Kynurenine/metabolism , Macrophages/metabolism , Receptors, Aryl Hydrocarbon/metabolism , T-Lymphocytes/metabolism , Animals , Brain Neoplasms/metabolism , Cell Line, Tumor , Disease Progression , Glioblastoma/metabolism , Humans , Kruppel-Like Factor 4 , Lipopolysaccharide Receptors/metabolism , Mice, Inbred C57BL , Mice, Transgenic , MicroRNAs/metabolism , STAT1 Transcription Factor , STAT3 Transcription Factor/metabolism , T-Lymphocytes/immunology , Tumor Microenvironment
15.
Cell ; 176(3): 581-596.e18, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30661753

ABSTRACT

Genome-wide studies have identified genetic variants linked to neurologic diseases. Environmental factors also play important roles, but no methods are available for their comprehensive investigation. We developed an approach that combines genomic data, screens in a novel zebrafish model, computational modeling, perturbation studies, and multiple sclerosis (MS) patient samples to evaluate the effects of environmental exposure on CNS inflammation. We found that the herbicide linuron amplifies astrocyte pro-inflammatory activities by activating signaling via sigma receptor 1, inositol-requiring enzyme-1α (IRE1α), and X-box binding protein 1 (XBP1). Indeed, astrocyte-specific shRNA- and CRISPR/Cas9-driven gene inactivation combined with RNA-seq, ATAC-seq, ChIP-seq, and study of patient samples suggest that IRE1α-XBP1 signaling promotes CNS inflammation in experimental autoimmune encephalomyelitis (EAE) and, potentially, MS. In summary, these studies define environmental mechanisms that control astrocyte pathogenic activities and establish a multidisciplinary approach for the systematic investigation of the effects of environmental exposure in neurologic disorders.


Subject(s)
Astrocytes/metabolism , Central Nervous System/metabolism , Animals , Central Nervous System/immunology , Computational Biology/methods , Encephalomyelitis, Autoimmune, Experimental/immunology , Endoribonucleases/metabolism , Environment , Environmental Exposure/adverse effects , Genome , Genomics , Humans , Inflammation/metabolism , Linuron/adverse effects , Mice , Mice, Inbred C57BL , Multiple Sclerosis/immunology , Protein Serine-Threonine Kinases/metabolism , Receptors, sigma/drug effects , Receptors, sigma/metabolism , Signal Transduction , X-Box Binding Protein 1/metabolism , Zebrafish
16.
Nature ; 557(7707): 724-728, 2018 05.
Article in English | MEDLINE | ID: mdl-29769726

ABSTRACT

Microglia and astrocytes modulate inflammation and neurodegeneration in the central nervous system (CNS)1-3. Microglia modulate pro-inflammatory and neurotoxic activities in astrocytes, but the mechanisms involved are not completely understood4,5. Here we report that TGFα and VEGF-B produced by microglia regulate the pathogenic activities of astrocytes in the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis. Microglia-derived TGFα acts via the ErbB1 receptor in astrocytes to limit their pathogenic activities and EAE development. Conversely, microglial VEGF-B triggers FLT-1 signalling in astrocytes and worsens EAE. VEGF-B and TGFα also participate in the microglial control of human astrocytes. Furthermore, expression of TGFα and VEGF-B in CD14+ cells correlates with the multiple sclerosis lesion stage. Finally, metabolites of dietary tryptophan produced by the commensal flora control microglial activation and TGFα and VEGF-B production, modulating the transcriptional program of astrocytes and CNS inflammation through a mechanism mediated by the aryl hydrocarbon receptor. In summary, we identified positive and negative regulators that mediate the microglial control of astrocytes. Moreover, these findings define a pathway through which microbial metabolites limit pathogenic activities of microglia and astrocytes, and suppress CNS inflammation. This pathway may guide new therapies for multiple sclerosis and other neurological disorders.


Subject(s)
Astrocytes/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/microbiology , Microglia/metabolism , Animals , Astrocytes/pathology , Cells, Cultured , Central Nervous System/metabolism , Central Nervous System/microbiology , Central Nervous System/pathology , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/prevention & control , ErbB Receptors/metabolism , Female , Humans , Inflammation/metabolism , Inflammation/microbiology , Inflammation/pathology , Inflammation/prevention & control , Lipopolysaccharide Receptors/metabolism , Mice , Mice, Inbred C57BL , Microglia/pathology , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Receptors, Aryl Hydrocarbon/metabolism , Symbiosis , Transforming Growth Factor alpha/biosynthesis , Transforming Growth Factor alpha/metabolism , Tryptophan/deficiency , Tryptophan/metabolism , Vascular Endothelial Growth Factor B/biosynthesis , Vascular Endothelial Growth Factor B/metabolism , Vascular Endothelial Growth Factor Receptor-1/metabolism
17.
Immunity ; 48(1): 19-33, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29343438

ABSTRACT

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is activated by small molecules provided by the diet, microorganisms, metabolism, and pollutants. AhR is expressed by a number of immune cells, and thus AhR signaling provides a molecular pathway that integrates the effects of the environment and metabolism on the immune response. Studies have shown that AhR signaling plays important roles in the immune system in health and disease. As its activity is regulated by small molecules, AhR also constitutes a potential target for therapeutic immunomodulation. In this review we discuss the role of AhR in the regulation of the immune response in the context of autoimmunity, infection, and cancer, as well as the potential opportunities and challenges of developing AhR-targeted therapeutics.


Subject(s)
Immune System/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Animals , Gene Expression Regulation , Humans , Immune System/physiology , Ligands , Signal Transduction/physiology
18.
Sci Rep ; 7(1): 3508, 2017 06 14.
Article in English | MEDLINE | ID: mdl-28615644

ABSTRACT

microRNAs (miRNAs) are tightly regulated during T lymphocyte activation to enable the establishment of precise immune responses. Here, we analyzed the changes of the miRNA profiles of T cells in response to activation by cognate interaction with dendritic cells. We also studied mRNA targets common to miRNAs regulated in T cell activation. pik3r1 gene, which encodes the regulatory subunits of PI3K p50, p55 and p85, was identified as target of miRNAs upregulated after T cell activation. Using 3'UTR luciferase reporter-based and biochemical assays, we showed the inhibitory relationship between miR-132-3p upregulation and expression of the pik3r1 gene. Our results indicate that specific miRNAs whose expression is modulated during T cell activation might regulate PI3K signaling in T cells.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , Class Ia Phosphatidylinositol 3-Kinase/metabolism , MicroRNAs/metabolism , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism , Animals , Cells, Cultured , HEK293 Cells , Humans , Mice, Inbred C57BL , Up-Regulation
19.
RNA ; 23(6): 882-891, 2017 06.
Article in English | MEDLINE | ID: mdl-28351886

ABSTRACT

Activation of T lymphocytes requires a tight regulation of microRNA (miRNA) expression. Terminal uridyltransferases (TUTases) catalyze 3' nontemplated nucleotide addition (3'NTA) to miRNAs, which may influence miRNA stability and function. Here, we investigated 3'NTA to mature miRNA in CD4 T lymphocytes by deep sequencing. Upon T-cell activation, miRNA sequences bearing terminal uridines are specifically decreased, concomitantly with down-regulation of TUT4 and TUT7 enzymes. Analyzing TUT4-deficient T lymphocytes, we proved that this terminal uridyltransferase is essential for the maintenance of miRNA uridylation in the steady state of T lymphocytes. Analysis of synthetic uridylated miRNAs shows that 3' addition of uridine promotes degradation of these uridylated miRNAs after T-cell activation. Our data underline post-transcriptional uridylation as a mechanism to fine-tune miRNA levels during T-cell activation.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Lymphocyte Activation/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Uridine/metabolism , Animals , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation , Humans , Lymphocyte Activation/immunology , Mice , Mice, Knockout , MicroRNAs/chemistry , Models, Biological , RNA Stability , Uridine/chemistry
20.
Eur J Pharm Sci ; 98: 70-79, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-27751843

ABSTRACT

Bladder cancer is the second most frequent malignancy of the urinary tract after prostate cancer. Current diagnostic techniques, such as cystoscopy and biopsies are highly invasive and accompanied of undesirable side effects. Moreover, there are no suitable biomarkers for relapse or progression prognosis. We analysed whether the specific composition of microRNAs (miRNAs) and proteins of extracellular vesicles (EVs) that urothelial tumour cells of bladder mucosa release into the urine, could reflect their pathologic condition. For this purpose, urinary EVs were isolated and their protein and miRNA composition evaluated in healthy donors and low or high-grade bladder cancer patients. Using a microarray platform containing probes for 851 human miRNAs we found 26 deregulated miRNAs in high-grade bladder cancer urine EVs, from which 23 were downregulated and 3 upregulated. Real-time PCR analysis pointed to miR-375 as a biomarker for high-grade bladder cancer while miR-146a could identify low-grade patients. Finally, several protein markers were also deregulated in EVs from tumour patients. Our data suggest that the presence of ApoB in the 100,000 pellet is a clear marker for malignancy.


Subject(s)
Apolipoprotein B-100/urine , Biomarkers, Tumor/urine , Extracellular Vesicles/metabolism , MicroRNAs/urine , Urinary Bladder Neoplasms/urine , Adult , Aged , Aged, 80 and over , Cell Line, Tumor , Disease Progression , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...