Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
Add more filters










Publication year range
1.
Chemosphere ; 358: 142112, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677613

ABSTRACT

The treatment of waterborne micropollutants, such as diclofenac, presents a significant challenge to wastewater treatment plants due to their incomplete removal by conventional methods. Ozonation is an effective technique for the degradation of micropollutants. However, incomplete oxidation can lead to the formation of ecotoxic by-products that require a subsequent post-treatment step. In this study, we analyze the susceptibility of micropollutant ozonation products to enzymatic digestion with laccase from Trametes versicolor to evaluate the potential of enzymatic treatment as a post-ozonation step. The omnipresent micropollutant diclofenac is used as an example, and the enzymatic degradation kinetics of all 14 detected ozonation products are analyzed by high-performance liquid chromatography coupled with high-resolution mass spectrometry (HPLC-HRMS) and tandem mass spectrometry (MS2). The analysis shows that most of the ozonation products are responsive to chemo-enzymatic treatment but show considerable variation in enzymatic degradation kinetics and efficiencies. Mechanistic investigation of representative transformation products reveals that the hydroxylated aromatic nature of the ozonation products matches the substrate spectrum, facilitating their rapid recognition as substrates by laccase. However, after initiation by laccase, the subsequent chemical pathway of the enzymatically formed radicals determines the global degradability observed in the enzymatic process. Substrates capable of forming stable molecular oxidation products inhibit complete detoxification by oligomerization. This emphasizes that it is not the enzymatic uptake of the substrates but the channelling of the reaction of the substrate radicals towards the oligomerization of the substrate radicals that is the key step in the further development of an enzymatic treatment step for wastewater applications.


Subject(s)
Diclofenac , Laccase , Oxidation-Reduction , Ozone , Wastewater , Water Pollutants, Chemical , Diclofenac/chemistry , Diclofenac/metabolism , Laccase/metabolism , Laccase/chemistry , Ozone/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism , Wastewater/chemistry , Kinetics , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry , Waste Disposal, Fluid/methods , Water Purification/methods , Polyporaceae
2.
Article in English | MEDLINE | ID: mdl-37917042

ABSTRACT

A modular tool box for photoresponsive cholesteric liquid crystals based on hydrogen-bonded assemblies is reported. By employing 3-azopyridines as photoswitch in cholesteric liquid-crystalline thin films, a fast and reversible blue shift is observed upon irradiation, allowing tuning of the structural color over the whole visible electromagnetic spectrum. Investigations of the materials via X-ray diffraction studies indicate that the blue shift is attributed to the photoinduced destruction of smectic clusters in the cholesteric phase, resulting in a contraction of the helical structure. Unprecedently, the use of a stereolithography 3D printer (SLA) allowed direct transfer of digital information into a multicolor photonic pattern, an important step toward photonic imaging and data storage.

3.
Gels ; 9(10)2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37888368

ABSTRACT

Thin, flat textile roofing offers negligible heat insulation. In warm areas, such roofing membranes are therefore equipped with metallized surfaces to reflect solar heat radiation, thus reducing the warming inside a textile building. Heat reflection effects achieved by metallic coatings are always accompanied by shading effects as the metals are non-transparent for visible light (VIS). Transparent conductive oxides (TCOs) are transparent for VIS and are able to reflect heat radiation in the infrared. TCOs are, e.g., widely used in the display industry. To achieve the perfect coatings needed for electronic devices, these are commonly applied using costly vacuum processes at high temperatures. Vacuum processes, on account of the high costs involved and high processing temperatures, are obstructive for an application involving textiles. Accepting that heat-reflecting textile membranes demand less perfect coatings, a wet chemical approach has been followed here when producing transparent heat-reflecting coatings. Commercially available TCOs were employed as colloidal dispersions or nanopowders to prepare sol-gel-based coating systems. Such coatings were applied to textile membranes as used for architectural textiles using simple coating techniques and at moderate curing temperatures not exceeding 130 °C. The coatings achieved about 90% transmission in the VIS spectrum and reduced near-infrared transmission (at about 2.5 µm) to nearly zero while reflecting up to 25% of that radiation. Up to 35% reflection has been realized in the far infrared, and emissivity values down to ε = 0.5777 have been measured.

4.
Front Bioeng Biotechnol ; 11: 1135447, 2023.
Article in English | MEDLINE | ID: mdl-37324416

ABSTRACT

A continuous protein recovery and purification system based on the true moving bed concept is presented. A novel adsorbent material, in the form of an elastic and robust woven fabric, served as a moving belt following the general designs observed in known belt conveyors. The composite fibrous material that forms the said woven fabric showed high protein binding capacity, reaching a static binding capacity equal to 107.3 mg/g, as determined via isotherm experiments. Moreover, testing the same cation exchange fibrous material in a packed bed format resulted in excellent dynamic binding capacity values (54.5 mg/g) even when operating at high flow rates (480 cm/h). In a subsequent step, a benchtop prototype was designed, constructed, and tested. Results indicated that the moving belt system could recover a model protein (hen egg white lysozyme) with a productivity up to 0.5 mg/cm2/h. Likewise, a monoclonal antibody was directly recovered from unclarified CHO_K1 cell line culture with high purity, as judged by SDS-PAGE, high purification factor (5.8), and in a single step, confirming the suitability and selectivity of the purification procedure.

5.
Nanomaterials (Basel) ; 13(7)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37049289

ABSTRACT

The COVID-19 pandemic has increased the usage of personal protective equipment (PPE) all round the world and, in turn, it has also increased the waste caused by disposable PPE. This has exerted a severe environmental impact, so in our work, we propose the utilization of a sustainable electrospun nanofiber based on poly lactic acid (PLA), as it is biobased and conditionally degradable. We optimized the weight percentage of the PLA-precursor solution and found that 19% PLA produces fine nanofibers with good morphology. We also introduced carbon nanodots (CNDs) in the nanofibers and evaluated their antibacterial efficiency. We used 1, 2, 3, and 4% CNDs with 19% PLA and found increased antibacterial activity with increased concentrations of CNDs. Additionally, we also applied a spunbond-nanofiber layered assembly for the medical face masks and found that with the addition of only 0.45 mg/cm2 on the nonwoven sheet, excellent particle filtration efficiency of 96.5% and a differential pressure of 39 Pa/cm2 were achieved, meeting the basic requirements for Type I medical face masks (ASTM-F2100).

6.
Environ Sci Pollut Res Int ; 30(18): 53128-53139, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36853537

ABSTRACT

Ozonation is a powerful technique to remove micropollutants from wastewater. As chemical oxidation of wastewater comes with the formation of varying, possibly persistent and toxic by-products, post-treatment of the ozonated effluent is routinely suggested. This study explored an enzymatic treatment of ozonation products using the laccase from Trametes versicolor. A high-performance liquid chromatography coupled with high-resolution mass spectrometry (HPLC-HRMS) analysis revealed that the major by-products were effectively degraded by the enzymatic post-treatment. The enzymatic removal of the by-products reduced the ecotoxicity of the ozonation effluent, as monitored by the inhibition of Aliivibrio fischeri. The ecotoxicity was more effectively reduced by enzymatic post-oxidation at pH 7 than at the activity maximum of the laccase at pH 5. A mechanistic HPLC-HRMS and UV/Vis spectroscopic analysis revealed that acidic conditions favored rapid conversion of the phenolic by-products to dead-end products in the absence of nucleophiles. In contrast, the polymerization to harmless insoluble polymers was favored at neutral conditions. Hence, coupling ozonation with laccase-catalyzed post-oxidation at neutral conditions, which are present in wastewater effluents, is suggested as a new resource-efficient method to remove persistent micropollutants while excluding the emission of potentially harmful by-products.


Subject(s)
Ozone , Water Pollutants, Chemical , Water Purification , Wastewater , Acetaminophen , Laccase , Trametes , Ozone/chemistry , Water Pollutants, Chemical/analysis , Waste Disposal, Fluid/methods , Water Purification/methods
7.
ACS Appl Mater Interfaces ; 15(1): 1984-1995, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36573577

ABSTRACT

Additives are widely used to improve the processability, toughness, and hydrolytic resistance of poly(lactic acid) (PLA)-based materials. This study compares neat PLA fibers and fibers made from PLA blends with either poly(butylene succinate) (PBS) as a plasticizer or poly(d-lactic acid) (PDLA) as a nucleating agent. The fibers have been characterized with regard to their physical and structural properties after fabrication as well as after artificial aging at elevated temperature and humidity conditions. All samples have been fabricated using industrial melt-spinning equipment, resulting in a high crystallinity of about XC = 80% and a good initial toughness. Long-term relaxation behavior has been assessed with a self-developed lifetime prediction model, which is successfully verified for semicrystalline blended fibers. Despite slight improvement of the fiber elasticity and ductility, both types of blended fibers demonstrated a reduced hydrolytic resistance. These results suggest a design strategy for neat durable PLA fibers through processing-induced high crystallinity and orientation, which provide improved hydrolytic stability while preserving tough mechanical performance.

8.
Electrophoresis ; 43(13-14): 1387-1398, 2022 07.
Article in English | MEDLINE | ID: mdl-35531709

ABSTRACT

Megaporous adsorbents were prepared based on nonwoven polyethylene terephthalate (PET) fabrics and functionalized by covalent modification with polyvinylamine (PVAm) or monotriazinyl-ß-cyclodextrin-substituted polyvinylamine (PVAm-MCT-ß-CD). Mechanical properties of the resulting fabrics were maintained, as judged by tensile strength tests and scanning electron microscopy. Exceptional porosity (≥82%) and preserved hydrodynamic characteristics (Pe ≥ 63) indicated excellent structural stability when packed. The performance of the constructed adsorbents was evaluated with high molecular weight (proteins) and low molecular weight (dyes) model compounds. The static binding capacity (SBC) for bovine serum albumin (BSA) was 79.7 ± 1.3 and 92.9 ± 8.2 mg/g for PVAm-modified and PVAm-MCT-ß-CD-modified fabrics, respectively. The mentioned materials also adsorbed Orange II, an acidic dye (92.4 ± 2.6 and 101.9 ± 2.6 mg/g, respectively), indicating that the hydrophobicity was a prevailing binding mechanism operating at a pH close to isoelectric point. SBC for lysozyme and toluidine blue O (TBO, a basic dye) onto PVAm-MCT-ß-CD functionalized PET was 52.7 ± 5.1 and 73.3 ± 0.6 mg/g, respectively. TBOs have also shown some affinity for PVAm functionalized PET, but this was most likely to be mediated by hydrophobicity. On the other hand, operating at a superficial velocity of 90 cm/h, dynamic binding capacity for BSA was 11.4 ± 3.5 and 2.5 ± 0.6 mg/g indicating the importance of possible aggregation mechanisms during protein binding at equilibrium. Thus, PET-based adsorbents require further functional improvement for chromatography applications. However, the easy-to-construct, scalable nonwoven adsorbents deserve further attention as a potential alternative to packed-bed-chromatography adsorbents.


Subject(s)
Serum Albumin, Bovine , Textiles , Adsorption , Coloring Agents , Porosity , Protein Binding , Serum Albumin, Bovine/chemistry
9.
ACS Appl Mater Interfaces ; 14(14): 16755-16763, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35377595

ABSTRACT

Dynamic covalent bonds bear great potential for the development of adaptive and self-healing materials. Herein, we introduce a versatile concept not only for the design of low-molecular-weight liquid crystals but also for their in situ postsynthetic modification by using the dynamic covalent nature of imine bonds. The methodology allows systematic investigations of structure-property relationships as well as the manipulation of the materials' behavior (liquid crystallinity) and the introduction of additional properties (here, fluorescence) by a solvent-free method. For the first time, the transamination reaction is followed by variable-temperature 19F solid-state NMR in the mesophase, providing insights into the reaction dynamics in a liquid crystalline material. Finally, the application potential for the design of liquid crystalline materials with adaptive properties is demonstrated by a sequential combination of these reactions.

10.
Biotechnol J ; 17(6): e2100452, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35233978

ABSTRACT

BACKGROUND: Polyesters with pendant hydroxyl groups are attractive materials which offer additional functionalization points in the polymer chain. In contrast to chemical polycondensation, lipase regioselectivity enables the synthesis of these materials as certain hydroxyl groups remain unaffected during the enzymatic process. METHODS AND MAJOR RESULTS: In this study, a combination of synthesis development and reactor design was used for the enzymatic synthesis of an aliphatic-aromatic polyester with two different classes of pendant hydroxyl groups. Using 2,6-bishydroxy(methyl)-p-cresol as diol in lipase catalyzed polycondensation with adipic acid required the addition of hexane diol as third monomer for polycondensation to take place. Reaction conditions were explored in order to identify the preferred reaction conditions for the incorporation of the aromatic diol and the enhancement of the hydroxyl group density. Post-polymerization with glycerol at low temperature integrated additional aliphatic hydroxyl groups, reduced the polydispersity and increased the end group functionality. CONCLUSION: A new material with aromatic building blocks and boosted polymer chain reactivity was obtained, which is suggested to find application in various areas of material development from coatings to adhesives.


Subject(s)
Lipase , Polyesters , Alcohols , Glycerol , Lipase/metabolism , Polymerization , Polymers
11.
Appl Biochem Biotechnol ; 194(8): 3384-3399, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35357660

ABSTRACT

A reusable support system for the immobilization of lipases is developed using hybrid polymer-inorganic core shell nanoparticles. The biocatalyst core consists of a silica nanoparticle. PMMA is grafted from the nanoparticle as polymer brush via ARGET ATRP (activator regenerated by electron transfer atom transfer radical polymerization), which allows defining the surface properties by chemical synthesis conditions. Lipase B from Candida antarctica is immobilized on the hybrid particles. The activity and stability of the biocatalyst are analyzed by spectroscopic activity analysis. It is shown that the hydrophobic PMMA brushes provide an activating surface for the lipase giving a higher specific activity than the enzyme in solution. Varying the surface structure from disordered to ordered polymer brushes reveals that the reusability of the biocatalyst is more effectively optimized by the surface structure than by the introduction of crosslinking with glutaraldehyde (GDA). The developed immobilization system is highly suitable for biocatalysis in non-native media which is shown by a transesterification assay in isopropyl alcohol and an esterification reaction in n-heptane.


Subject(s)
Enzymes, Immobilized , Lipase , Basidiomycota , Biocatalysis , Enzymes, Immobilized/chemistry , Lipase/chemistry , Polymers/chemistry , Polymethyl Methacrylate
12.
Soft Matter ; 18(2): 365-371, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34889343

ABSTRACT

We investigate the shrinkage of a surface-grafted water-swollen hydrogel under shear flows of oils by laser scanning confocal microscopy. Interestingly, external shear flows of oil lead to linear dehydration and shrinkage of the hydrogel for all investigated flow conditions irrespective of the chemical nature of the hydrogel. The reason is that the finite solubility of water in oil removes water from the hydrogel continuously by diffusion. The flow advects the water-rich oil, as demonstrated by numerical solutions of the underlying convection-diffusion equation. In line with this hypothesis, shear does not cause gel shrinkage for water-saturated oils or non-solvents. The solubility of water in the oil will tune the dehydration dynamics.

13.
ACS Appl Mater Interfaces ; 13(51): 61707-61722, 2021 Dec 29.
Article in English | MEDLINE | ID: mdl-34913672

ABSTRACT

Energy consumption by air-conditioning is expansive and leads to the emission of millions of tons of CO2 every year. A promising approach to circumvent this problem is the reflection of solar radiation: Rooms that would not heat up by irradiation will not need to be cooled down. Especially, transparent conductive metal oxides exhibit high infrared (IR) reflectivity and are commonly applied as low-emissivity coatings (low-e coatings). Indium tin oxide (ITO) coatings are the state-of-the-art application, though indium is a rare and expensive resource. This work demonstrates that aluminum-doped zinc oxide (AZO) can be a suitable alternative to ITO for IR-reflection applications. AZO synthesized here exhibits better emissivity to be used as roofing membrane coatings for buildings in comparison to commercially available ITO coatings. AZO particles forming the reflective coating are generated via solvothermal synthesis routes and obtain high conductivity and IR reflectivity without the need of any further post-thermal treatment. Different synthesis parameters were studied, and their effects on both conductive and optical properties of the AZO nanoparticles were evaluated. To this end, a series of characterization methods, especially 27Al-nuclear magnetic resonance spectroscopy (27Al-NMR) analysis, have been conducted for a deeper insight into the particles' structure to understand the differences in conductivity and optical properties. The optimized AZO nanoparticles were coated on flexible transparent textile-based roofing membranes and tested as low-e coatings. The membranes demonstrated higher thermal reflectance compared with commercial ITO materials with an emissivity value lowered by 16%.

14.
Molecules ; 26(24)2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34946742

ABSTRACT

Dynamic tensiometry is shown to be a high-potential analytical tool in assessing physico-chemical characteristics of fragrance molecules, such as solubility limit, volatility as well as much rarely assessed interfacial activity of these amphiphilic molecules. Surface tension of aqueous solutions of selected essential oils has been measured as a function of time and fragrance concentration using maximum bubble pressure method. The effect of the temperature and saline solution on the rate of dissolution in water was assessed. Dynamic surface tension turned to be sensitive to the composition of fragrances, as demonstrated on examples of natural and synthetic mixtures. Furthermore, presented work reveals the possibility of maximum bubble pressure tensiometry method to quantify the amount of fragrance compositions in flavored salts, including the artificially aged carrier samples. Suggested here analytical approach can be used for the detection of the purity of essential oils, for the optimization of compositions and of the manufacturing processes of fragrances-containing products, as well as for the assessment of the release/evaporation of fragrances from carrier systems.


Subject(s)
Odorants/analysis , Oils, Volatile/analysis , Perfume/analysis , Water/chemistry , Solubility , Surface Tension
15.
Angew Chem Int Ed Engl ; 60(3): 1465-1473, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-32964609

ABSTRACT

NIR-sensitized cationic polymerization proceeded with good efficiency, as was demonstrated with epoxides, vinyl ether, and oxetane. A heptacyanine functioned as sensitizer while iodonium salt served as coinitiator. The anion adopts a special function in a series selected from fluorinated phosphates (a: [PF6 ]- , b: [PF3 (C2 F5 )3 ]- , c: [PF3 (n-C4 F9 )3 ]- ), aluminates (d: [Al(O-t-C4 F9 )4 ]- , e: [Al(O(C3 F6 )CH3 )4 ]- ), and methide [C(O-SO2 CF3 )3 ]- (f). Vinyl ether showed the best cationic polymerization efficiency followed by oxetanes and oxiranes. DFT calculations provided a rough pattern regarding the electrostatic potential of each anion where d showed a better reactivity than e and b. Formation of interpenetrating polymer networks (IPNs) using trimethylpropane triacrylate and epoxides proceeded in the case of NIR-sensitized polymerization where anion d served as counter ion in the initiator system. No IPN was formed by UV-LED initiation using the same monomers but thioxanthone/iodonium salt as photoinitiator. Exposure was carried out with new NIR-LED devices emitting at either 805 or 870 nm.

16.
Chembiochem ; 22(2): 398-407, 2021 01 15.
Article in English | MEDLINE | ID: mdl-32798264

ABSTRACT

Singlet oxygen is a reactive oxygen species undesired in living cells but a rare and valuable reagent in chemical synthesis. We present a fluorescence spectroscopic analysis of the singlet-oxygen formation activity of commercial peroxidases and novel peroxygenases. Singlet-oxygen sensor green (SOSG) is used as fluorogenic singlet oxygen trap. Establishing a kinetic model for the reaction cascade to the fluorescent SOSG endoperoxide permits a kinetic analysis of enzymatic singlet-oxygen formation. All peroxidases and peroxygenases show singlet-oxygen formation. No singlet oxygen activity could be found for any catalase under investigation. Substrate inhibition is observed for all reactive enzymes. The commercial dye-decolorizing peroxidase industrially used for dairy bleaching shows the highest singlet-oxygen activity and the lowest inhibition. This enzyme was immobilized on a textile carrier and successfully applied for a chemical synthesis. Here, ascaridole was synthesized via enzymatically produced singlet oxygen.


Subject(s)
Mixed Function Oxygenases/metabolism , Peroxidases/metabolism , Singlet Oxygen/metabolism , Fluorescent Dyes/chemistry , Mixed Function Oxygenases/chemistry , Molecular Structure , Peroxidases/chemistry , Singlet Oxygen/chemistry
17.
Polymers (Basel) ; 12(9)2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32942755

ABSTRACT

Thin polymer films and coatings are used to tailor the properties of surfaces in various applications such as protection against corrosion, biochemical functionalities or electronic resistors. Polymer brushes are a certain kind of thin polymer films, where polymer chains are covalently grafted to a substrate and straighten up to form a brush structure. Here we report on differences and similarities between polymer brushes and spin-coated polymer films from polystyrene and polymethyl methacrylate with special emphasis on surface roughness and roughness correlation. The phenomenon of roughness correlation or conformality describes the replication of the roughness profile from the substrate surface to the polymer surface. It is of high interest for polymer physics of brush layers as well as applications, in which a homogeneous polymer layer thickness is required. We demonstrate that spin-coated films as well as polymer brushes show roughness correlation, but in contrast to spin-coated films, the correlation in brushes is stable to solvent vapor annealing. Roughness correlation is therefore an intrinsic property of polymer brushes.

18.
Polymers (Basel) ; 12(8)2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32824007

ABSTRACT

Aramids represent a class of high-performance fibers with outstanding properties and manifold technical applications, e.g., in flame-retardant protective clothing for firefighters and soldiers. However, the dyeing of aramid fibers is accompanied by several economic and ecological disadvantages, resulting in a high consumption of water, energy and chemicals. In this study, a new and innovative dyeing procedure for m-aramid fibers using ionic liquids (ILs) is presented. The most relevant parameters of IL-dyed fibers, such as tensile strength, elongation and fastness towards washing, rubbing and light, were determined systematically. In summary, all aramid textiles dyed in ILs show similar or even better results than the conventionally dyed samples. In conclusion, we have successfully paved the way for a new, eco-friendly and more sustainable dyeing process for aramids in the near future.

19.
Polymers (Basel) ; 12(5)2020 May 25.
Article in English | MEDLINE | ID: mdl-32466250

ABSTRACT

Phytic acid (PA), as a natural source of phosphorus, was immobilized on cotton (CO) in a layer-by-layer (LbL) approach with polyvinylamine (PVAm) as the oppositely charged electrolyte to create a partly bio-based flame-retardant finish. PVAm was employed as a synthetic nitrogen source with the highest density of amine groups of all polymers. Vertical flame tests revealed a flame-retardant behavior with no afterflame and afterglow time for a coating of 15 bilayers (BL) containing 2% phosphorus and 1.4% nitrogen. The coating achieved a molar P:N ratio of 3:5. Microscale combustion calorimetry (MCC) analyses affirmed the flame test findings by a decrease in peak heat release rate (pkHRR) by more than 60% relative to unfinished CO. Thermogravimetric analyses (TGA) and MCC measurements exhibited a shifted CO peak to lower temperatures indicating proceeding reactions to form an isolating char on the surface. Fourier transform infrared spectroscopy (FTIR) coupled online with a TGA system, allowed the identification of a decreased amount of acrolein, methanol, carbon monoxide and formaldehyde during sample pyrolysis and a higher amount of released water. Thereby the toxicity of released volatiles was reduced. Our results prove that PA enables a different reaction by catalyzing cellulosic dehydration, which results in the formation of a protective char on the surface of the burned fabric.

20.
Chemistry ; 26(46): 10444-10451, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32343443

ABSTRACT

NIR exposure at 790 nm activated photopolymerization of monomers comprising UV-absorbing moieties by using [CuII /(TPMA)]Br2 (TPMA=tris(2-pyridylmethyl)amine) in the ppm range and an alkyl bromide as initiator. Some of them comprised structural elements selected either from those showing proton transfer or photocycloaddition upon UV excitation. Polymers obtained comprise living end groups serving as macroinitiator for controlled synthesis of block copolymers with relatively narrow molecular weight distributions. Chromatographic results indicated formation of block copolymers produced by this synthetic approach. Free-radical polymerization of monomers pursued for comparison exhibited the expected broader dispersity of molecular weight compared to photo-ATRP. Polymerization of these monomers by UV photo-ATRP failed on the contrary to NIR photo-ATRP demonstrating the UV-filter function of the monomers. This work conclusively provides a new approach for the polymerization of monomers comprising UV-absorbing moieties through photo-ATRP in the NIR region. This occurred in a simple and efficient pathway. However, studies also showed that not all monomers chosen successfully proceeded in the NIR photo-ATRP protocol.

SELECTION OF CITATIONS
SEARCH DETAIL
...