Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Publication year range
1.
Genes (Basel) ; 9(9)2018 Sep 11.
Article in English | MEDLINE | ID: mdl-30208644

ABSTRACT

Congenital conotruncal heart defects (CCHD) are a subset of serious congenital heart defects (CHD) of the cardiac outflow tracts or great arteries. Its frequency is estimated in 1/1000 live births, accounting for approximately 10⁻30% of all CHD cases. Chromosomal abnormalities and copy number variants (CNVs) contribute to the disease risk in patients with syndromic and/or non-syndromic forms. Although largely studied in several populations, their frequencies are barely reported for Latin American countries. The aim of this study was to analyze chromosomal abnormalities, 22q11 deletions, and other genomic imbalances in a group of Argentinean patients with CCHD of unknown etiology. A cohort of 219 patients with isolated CCHD or associated with other major anomalies were referred from different provinces of Argentina. Cytogenetic studies, Multiplex-Ligation-Probe-Amplification (MLPA) and fluorescent in situ hybridization (FISH) analysis were performed. No cytogenetic abnormalities were found. 22q11 deletion was found in 23.5% of the patients from our cohort, 66% only had CHD with no other major anomalies. None of the patients with transposition of the great vessels (TGV) carried the 22q11 deletion. Other 4 clinically relevant CNVs were also observed: a distal low copy repeat (LCR)D-E 22q11 duplication, and 17p13.3, 4q35 and TBX1 deletions. In summary, 25.8% of CCHD patients presented imbalances associated with the disease.

2.
J Endocrinol ; 195(1): 167-77, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17911408

ABSTRACT

Thyroglobulin (TG) functions as the matrix for thyroid hormone synthesis. Thirty-five different loss-of-function mutations in the TG gene have been reported. These mutations are transmitted in an autosomal recessive mode. The objective of this study is to analyze the recurrence of the p.R277X/p.R1511X compound heterozygous mutation in the TG gene in two unrelated families (one Argentinian and another Brazilian) with congenital hypothyroidism, goiter and impairment of TG synthesis. The first and last exon of the TG gene, the exons where previously mutations and single nucleotide polymorphisms (SNPs) were detected, as well as the TG promoter, were analyzed by automatic sequencing in one affected member of the each family. Four microsatellite markers localized in introns 10, 27, 29 and 30 of the TG gene, one insertion/deletion intragenic polymorphism and 15 exonic SNPs were used for haplotype analysis. A p.R277X/p.R1511 compound heterozygous mutation in the TG gene was found in two members of an Argentinian family. The same mutations had been also reported previously in two members of a Brazilian family. We constructed mutation-associated haplotypes by genotyping members of the two families. Our results suggest that the cosegregating haplotype is different in each one of these families. Different haplotypes segregated with the p.R277X and p.R1511 mutations demonstrating the absence of a founder effect for these mutations between Argentinian and Brazilian populations. However, haplotyping of Argentinian patients showed the possibility that the p.R277X alleles might be derived from a common ancestral chromosome.


Subject(s)
Congenital Hypothyroidism/genetics , Goiter/genetics , Polymorphism, Single Nucleotide , Thyroglobulin/genetics , Argentina , Autoradiography , Brazil , Child , Congenital Hypothyroidism/physiopathology , Gene Frequency , Genotype , Haplotypes , Heterozygote , Humans , Infant, Newborn , Male , Microsatellite Repeats , Mutation , Pedigree , Sequence Analysis, DNA , Thyroid Function Tests , Thyroid Gland/physiopathology
3.
Medicina (B Aires) ; 65(3): 257-67, 2005.
Article in Spanish | MEDLINE | ID: mdl-16042141

ABSTRACT

Thyroid diseases constitute a heterogeneous collection of abnormalities associated with mutations in genes responsible for the development of thyroid: thyroid transcription factor-1 (TTF-1), thyroid transcriptions factor-2 (TTF-2) and PAX8, or in one of the genes coding for the proteins involved in thyroid hormone biosynthesis such as thyroglobulin (TG), thyroperoxidase (TPO), hydrogen peroxide-generating system (DUOX2), sodium/iodide symporter (NIS), pendrin (PDS), TSH and TSH receptor (TSHr). Congenital hypothyroidism occurs with a prevalence of 1 in 4000 newborns. Patients with this syndrome can be divided into two groups: nongoitrous (dysem/bryogenesis) or goitrous (dyshormonogenesis) congenital hypothyroidism. The dysembryogenesis group, which accounts for 85% of the cases, results from ectopy, agenesis and hypoplasia. In a minority of these patients, the congenital hypothyroidism is associated with mutations in TTF-1, TTF-2, PAX-8, TSH or TSHr genes. The presence of congenital goiter (15% of the cases) has been linked to mutations in the NIS, TG, TPO, DUOX2 or PDS genes. The congenital hypothyroidism with dyshormonogenesis is transmitted as an autosomal recessive trait. Somatic mutations of the TSHr have been identified in hyperfunctioning thyroid adenomas. Another established thyroid disease is the resistance to thyroid hormone (RTH). It is a syndrome of reduced tissue responsiveness to hormonal action caused by mutations located in the thyroid hormone receptor beta (TRbeta) gene. Mutant TRbetas interfere with the function of the wild-type receptor by a dominant negative mechanism. In conclusion, the identification of mutations in the thyroid expression genes has provided important insights into structure-function relationships. The thyroid constitutes an excellent model for the molecular study of genetic diseases.


Subject(s)
Congenital Hypothyroidism/genetics , Goiter/genetics , Hyperthyroidism/genetics , Congenital Hypothyroidism/metabolism , Goiter/metabolism , Humans , Hyperthyroidism/metabolism , Iodide Peroxidase/genetics , Iodide Peroxidase/metabolism , Mutation , Receptors, Thyrotropin/genetics , Thyroid Hormones/biosynthesis , Thyroid Hormones/genetics
4.
J Clin Endocrinol Metab ; 90(6): 3766-70, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15769978

ABSTRACT

Identification of thyroglobulin (TG) gene mutations may provide insight into the structure-function relationship. In this study, we have performed molecular studies in a patient with congenital goiter, hypothyroidism, and impairment of TG synthesis. Genomic DNA sequencing revealed a homozygous c.886C-->T mutation in exon 7, resulting in a premature stop codon at amino acid 277 (p.R277X). The same nonsense mutation had been reported previously in two Brazilian families with multiple occurrence of congenital hypothyroidism with goiter. We compared the insertion/deletion polymorphism in intron 18, microsatellites (Tgm1, Tgm2, TGrI29, and TGrI30), and exonic single-nucleotide polymorphism haplotypes identified in the patient with a member of the previously reported family, who also carry the mutation as a compound heterozygous mutation. The single-nucleotide polymorphism and microsatellite analysis revealed that the two affected individuals do not share a common TG allele. This suggests that the p.R277X mutation is a mutational hot spot. No difference in either splicing or abundance of the amplified product was detected by RT-PCR, excluding that an alternative splicing mechanism, by skipping of exon 7, would restore the normal reading frame. In conclusion, we report a new case of congenital goiter and hypothyroidism caused by a p.R277X mutation in the TG gene. Moreover, we show that nucleotide 886 is a mutational hot spot that explains the recurrence of this mutation.


Subject(s)
Amino Acid Substitution , Exons/genetics , Goiter/congenital , Goiter/genetics , Polymorphism, Single Nucleotide , Thyroglobulin/genetics , Amino Acid Sequence , Base Sequence , Genetic Variation , Homozygote , Humans , Hypothyroidism/genetics , Molecular Sequence Data , Mutation, Missense , Reference Values , Reverse Transcriptase Polymerase Chain Reaction
5.
Medicina [B Aires] ; 65(3): 257-67, 2005.
Article in Spanish | BINACIS | ID: bin-38298

ABSTRACT

Thyroid diseases constitute a heterogeneous collection of abnormalities associated with mutations in genes responsible for the development of thyroid: thyroid transcription factor-1 (TTF-1), thyroid transcriptions factor-2 (TTF-2) and PAX8, or in one of the genes coding for the proteins involved in thyroid hormone biosynthesis such as thyroglobulin (TG), thyroperoxidase (TPO), hydrogen peroxide-generating system (DUOX2), sodium/iodide symporter (NIS), pendrin (PDS), TSH and TSH receptor (TSHr). Congenital hypothyroidism occurs with a prevalence of 1 in 4000 newborns. Patients with this syndrome can be divided into two groups: nongoitrous (dysem/bryogenesis) or goitrous (dyshormonogenesis) congenital hypothyroidism. The dysembryogenesis group, which accounts for 85


of the cases, results from ectopy, agenesis and hypoplasia. In a minority of these patients, the congenital hypothyroidism is associated with mutations in TTF-1, TTF-2, PAX-8, TSH or TSHr genes. The presence of congenital goiter (15


of the cases) has been linked to mutations in the NIS, TG, TPO, DUOX2 or PDS genes. The congenital hypothyroidism with dyshormonogenesis is transmitted as an autosomal recessive trait. Somatic mutations of the TSHr have been identified in hyperfunctioning thyroid adenomas. Another established thyroid disease is the resistance to thyroid hormone (RTH). It is a syndrome of reduced tissue responsiveness to hormonal action caused by mutations located in the thyroid hormone receptor beta (TRbeta) gene. Mutant TRbetas interfere with the function of the wild-type receptor by a dominant negative mechanism. In conclusion, the identification of mutations in the thyroid expression genes has provided important insights into structure-function relationships. The thyroid constitutes an excellent model for the molecular study of genetic diseases.

6.
J Clin Endocrinol Metab ; 89(2): 646-57, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14764776

ABSTRACT

In this study, we have extended our initial molecular studies of a nonconsanguineous family with two affected siblings and one of their nephews with congenital goiter, hypothyroidism, and marked impairment of thyroglobulin synthesis. Genomic DNA sequencing revealed that the index patient (affected nephew) was heterozygous for a single base change of a cytosine to a thymine at nucleotide 886 in exon 7 (886C>T, mother's mutation) in one allele and for a novel guanine to cytosine transversion at position -1 of the splice acceptor site in intron 34 (IVS34-1G>C, father's mutation) in the other allele. The two affected siblings inherited the 886C>T mutation from their mother and a previously reported cytosine to thymine transition at nucleotide 4588 in exon 22 from their father (4588C>T). The 886C>T and 4588C>T substitutions resulted in premature stop codons at amino acids 277 (R277X) and 1511 (R1511X), respectively. In vitro transcription analysis showed that the exon 35 is skipped entirely when the IVS34-1G>C mutation is present, whereas the wild-type allele is correctly spliced. SSCP (exon 7 and 35) and restriction analysis (exon 22) using Taq I indicated that the two affected siblings, the affected nephew, his mother, and his unaffected brother were all heterozygous for the R277X mutation. The two affected siblings, their father, and three unaffected siblings were all heterozygous for the R1511X mutation, whereas the affected nephew and his father were heterozygous for the IVS34-1G>C mutation. Moreover, in this kindred, we have characterized polymorphisms (insertion/deletion, microsatellite, and single nucleotide polymorphism) located within introns 18 and 29 and exon 44 that are associated with the described mutations. Haplotype analysis with these polymorphic markers in two unrelated Brazilian families (present family studied and previously reported family) harboring the R277X mutation suggests a founder effect for the R277X mutation. In conclusion, the affected individuals of this family are either compound heterozygous for R277X/IVS34-1G>C or R277X/R1511X. This observation further supports that thyroglobulin gene mutations display significant intraallelic heterogeneity.


Subject(s)
Goiter/genetics , Heterozygote , Thyroglobulin/deficiency , Thyroglobulin/genetics , Amino Acid Sequence/genetics , Amino Acid Substitution , Arginine , Base Sequence/genetics , Brazil , Chromosome Segregation , Codon, Terminator , Cytosine , Founder Effect , Genetic Markers , Humans , Male , Molecular Sequence Data , Pedigree , Polymorphism, Single Nucleotide , Thymine
7.
J Clin Endocrinol Metab ; 88(8): 3546-53, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12915634

ABSTRACT

In a 22-yr-old healthy woman, a fetal goiter was diagnosed coincidentally by ultrasound during the sixth month of gestation, and hypothyroidism was affirmed by a high TSH (336 mU/liter) concentration after cordocentesis. A second ultrasound examination at 27 wk gestation showed further enlargement of the goiter (34/21 mm). Two intraamniotic injections of 200 microg levothyroxine were performed during the seventh month of pregnancy. Ultrasound studies revealed a fetal goiter size of 30/18 mm during the eighth month of gestation. The woman delivered at term a female infant with an Apgar score of 10 at 1 and 5 min. Cord blood analysis indicated elevated TSH (284 mU/liter) and low free T(4) (5.5 pmol/liter) levels. The serum thyroglobulin (Tg) concentration was low (0.8 ng/ml), whereas ultrasound of the neonate indicated an enlarged thyroid gland (32/15/14 mm). During the second pregnancy, ultrasound examination revealed a goiter, and fetal hypothyroidism was also confirmed after umbilical vein blood sampling (TSH, 472 mU/liter). After two intraamniotic injections of 500 microg levothyroxine, the woman delivered a male infant at 37 wk of pregnancy. In cord blood the serum TSH concentration was 39 mU/liter, and the serum Tg level was low (0.7 ng/ml). The parents were nonconsanguineous. After birth of the two affected siblings, genomic DNA sequencing identified the presence of compound heterozygous mutations of the Tg gene: the paternal mutation consists of a cytosine deletion at nucleotide 1143 in exon 9 (1143delC), resulting in a frameshift that generates a stop codon at position 382, and the maternal mutation is a guanine to adenine substitution at position 6725 in exon 38, creating the R2223H missense mutation in the acetylcholinesterase homology domain of Tg. In conclusion, we report two siblings with congenital goiter and hypothyroidism caused by compound heterozygous mutations of the Tg gene.


Subject(s)
Goiter/genetics , Hypothyroidism/genetics , Mutation/genetics , Thyroglobulin/genetics , Adult , Amino Acid Sequence , Base Sequence , DNA/biosynthesis , DNA/genetics , Exons/genetics , Female , Frameshift Mutation/genetics , Goiter/diagnostic imaging , Goiter/etiology , Humans , Hypothyroidism/complications , Molecular Sequence Data , Mutation, Missense/genetics , Pedigree , Reverse Transcriptase Polymerase Chain Reaction , Sequence Deletion/genetics , Thyroid Function Tests , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL
...