Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 767, 2017 04 10.
Article in English | MEDLINE | ID: mdl-28396601

ABSTRACT

Strong light-matter interaction in Bragg structures possesses several advantages over conventional microcavity system. These structures provide an opportunity to incorporate a large number of quantum wells without increasing the mode volume. Further, it is expected that the strong coupling could occur over the entire thickness of the Bragg structure, and the system offers an improved overlap between exciton wave function and light mode. However, advanced experiments in Bragg structures require a precise control and manipulation of quantum states of Bragg polaritons. Here, we propose and experimentally demonstrate novel methods for the modulation of Bragg polariton eigenstates. The modulation will be shown to even exceed 10 meV if the thickness of the top layer of the ZnSe-based Bragg structure is changed or if a thin silver layer is deposited on top of the structure. The Q value of the Bragg mode will be enhanced by a factor of 2.3 for a 30 nm silver layer. In addition, we report on the observation of nonlinear emission of the lower Bragg polariton mode in the hybrid structure being achieved when excitation dependent measurements are performed. Our results open the door to create a confined Bragg polariton system similar to conventional microcavities.

2.
Sci Rep ; 6: 34392, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27698359

ABSTRACT

We present evidence for the existence of a hybrid state of Tamm plasmons and microcavity exciton polaritons in a II-VI material based microcavity sample covered with an Ag metal layer. The bare cavity mode shows a characteristic anticrossing with the Tamm-plasmon mode, when microreflectivity measurements are performed for different detunings between the Tamm plasmon and the cavity mode. When the Tamm-plasmon mode is in resonance with the cavity polariton four hybrid eigenstates are observed due to the coupling of the cavity-photon mode, the Tamm-plasmon mode, and the heavy- and light-hole excitons. If the bare Tamm-plasmon mode is tuned, these resonances will exhibit three anticrossings. Experimental results are in good agreement with calculations based on the transfer matrix method as well as on the coupled-oscillators model. The lowest hybrid eigenstate is observed to be red shifted by about 13 meV with respect to the lower cavity polariton state when the Tamm plasmon is resonantly coupled with the cavity polariton. This spectral shift which is caused by the metal layer can be used to create a trapping potential channel for the polaritons. Such channels can guide the polariton propagation similar to one-dimensional polariton wires.

3.
Ultramicroscopy ; 111(8): 1316-27, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21864772

ABSTRACT

We suggest a method for chemical mapping that is based on scanning transmission electron microscopy (STEM) imaging with a high-angle annular dark field (HAADF) detector. The analysis method uses a comparison of intensity normalized with respect to the incident electron beam with intensity calculated employing the frozen lattice approximation. This procedure is validated with an In(0.07)Ga(0.93)N layer with homogeneous In concentration, where the STEM results were compared with energy filtered imaging, strain state analysis and energy dispersive X-ray analysis. Good agreement was obtained, if the frozen lattice simulations took into account static atomic displacements, caused by the different covalent radii of In and Ga atoms. Using a sample with higher In concentration and series of 32 images taken within 42 min scan time, we did not find any indication for formation of In rich regions due to electron beam irradiation, which is reported in literature to occur for the parallel illumination mode. Image simulation of an In(0.15)Ga(0.85)N layer that was elastically relaxed with empirical Stillinger-Weber potentials did not reveal significant impact of lattice plane bending on STEM images as well as on the evaluated In concentration profiles for specimen thicknesses of 5, 15 and 50 nm. Image simulation of an abrupt interface between GaN and In(0.15)Ga(0.85)N for specimen thicknesses up to 200 nm showed that artificial blurring of interfaces is significantly smaller than expected from a simple geometrical model that is based on the beam convergence only. As an application of the method, we give evidence for the existence of In rich regions in an InGaN layer which shows signatures of quantum dot emission in microphotoluminescence spectroscopy experiments.

4.
Nano Lett ; 6(4): 704-8, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16608268

ABSTRACT

In the present paper, studies on the state of strain in single and ensembles of nanocolumns investigated by photoluminescence spectroscopy will be presented. The GaN nanocolumns were either grown in a bottom-up approach or prepared in a top-down approach by etching compact GaN layers grown on Si(111) and sapphire (0001) substrates. Experimental evidence for strain relaxation of the nanocolumns was found. The difference and development of the strain value for different nanocolumns could be verified by spatially resolved micro-photoluminescence on single nanocolumns separated from their substrate. A common D0X spectral position at 3.473 eV was found for all separated single GaN nanocolumns independent of the substrate or processing technique used, as expected for a relaxed system.


Subject(s)
Gallium/analysis , Gallium/chemistry , Luminescent Measurements , Nanotubes/chemistry , Nanotubes/ultrastructure , Elasticity , Materials Testing , Nanotubes/radiation effects , Particle Size , Stress, Mechanical , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL
...