Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Bot ; 97(6): 1127-38, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16520341

ABSTRACT

BACKGROUND AND AIMS: Neutral red (NR), a lipophilic phenazine dye, has been widely used in various biological systems as a vital stain for bright-field microscopy. In its unprotonated form it penetrates the plasma membrane and tonoplast of viable plant cells, then due to protonation it becomes trapped in acidic compartments. The possible applications of NR for confocal laser scanning microscopy (CLSM) studies were examined in various aspects of plant root biology. METHODS: NR was used as a fluorochrome for living roots of Phaseolus vulgaris, Allium cepa, A. porrum and Arabidopsis thaliana (wild-type and transgenic GFP-carrying lines). The tissues were visualized using CLSM. The effect of NR on the integrity of the cytoskeleton and the growth rate of arabidopsis primary roots was analysed to judge potential toxic effects of the dye. KEY RESULTS: The main advantages of the use of NR are related to the fact that NR rapidly penetrates root tissues, has affinity to suberin and lignin, and accumulates in the vacuoles. It is shown that NR is a suitable probe for visualization of proto- and metaxylem elements, Casparian bands in the endodermis, and vacuoles in cells of living roots. The actin cytoskeleton and the microtubule system of the cells, as well as the dynamics of root growth, remain unchanged after short-term application of NR, indicating a relatively low toxicity of this chemical. It was also found that NR is a useful probe for the observation of the internal structures of root nodules and of fungal hyphae in vesicular-arbuscular mycorrhizas. CONCLUSIONS: Ease, low cost and absence of tissue processing make NR a useful probe for structural, developmental and vacuole-biogenetic studies of plant roots with CLSM.


Subject(s)
Microscopy, Confocal/methods , Neutral Red , Plant Roots/anatomy & histology , Molecular Probe Techniques , Mycorrhizae/cytology , Plant Roots/growth & development , Vacuoles/ultrastructure
2.
Mycorrhiza ; 12(6): 303-11, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12466918

ABSTRACT

In a water-exclusion experiment, five different ecotypes of beech (Fagus sylvatica L.; representing regions of different environmental and climatic conditions in Baden-Württemberg, Germany) were subjected to drought conditions of different severity between July and September of two consecutive years. Drought stress as characterised by the water content and the pre-dawn water potential of the leaves was related to the degree of mycorrhization, the type of ectomycorrhiza, and the physiological properties of individual fungus/plant interactions at the fine roots of different beech ecotypes. Our data show that decreased soil water availability did not significantly change either the degree of fungal colonisation of beech roots (measured by the amount of ergosterol) or the number of ectomycorrhizal types per root system. Drought did, however, have an influence on the composition of the ectomycorrhizal community, and different mycorrhizal types responded to drought differently in terms of their patterns of occurrence/abundance. While the abundance of the dominant mycorrhizal types, formed with Byssocorticium atrovirens and Lactarius subdulcis, was not affected, drought increased the abundance of mycorrhiza formed between beech and Xerocomus chrysenteron. A detailed analysis of plant and fungal carbohydrates in mycorrhizas indicated that different drought intensities led to distinguishable responses. In plants exhibiting a pre-dawn water potential of down to -1.96 MPa, drought caused the accumulation of sucrose, glucose and fructose, and of fungus-specific compounds such as mannitol and arabitol in mycorrhizal roots at the expense of, e.g. trehalose. The accumulation of sugar alcohols, which constitute compatible solutes known to counteract drought stress, was species-specific. Mycorrhizas with X. chrysenteron formed large amounts of arabitol, while those with L. subdulcis accumulated mannitol. Sustained partitioning of carbon towards the mycorrhizal fungi under drought was also reflected by an increase of nitrogen storage in the fungal vacuoles. In treatments where the pre-dawn water potential reached values of as low as -2.4 MPa, such alterations were no longer found. In such plants, the starch and soluble sugars content was generally reduced, which also resulted in a lack of increase in protective, fungus-specific sugar alcohols. In summary, the data show that, within certain limits, an increase in drought causes a shift in plant/fungus communities. The shift in the pattern of fungus-specific compounds could possibly be used as a sensitive measure of physiological stress imposed on this symbiosis.


Subject(s)
Fagus/microbiology , Mycorrhizae/physiology , Carbohydrates/analysis , Dehydration , Ecosystem , Fagus/physiology , Germany , Mycorrhizae/chemistry , Nitrogen/analysis , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...