Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
NMR Biomed ; 33(4): e4247, 2020 04.
Article in English | MEDLINE | ID: mdl-31970849

ABSTRACT

Multi-contrast images are commonly acquired together to maximize complementary diagnostic information, albeit at the expense of longer scan times. A time-efficient strategy to acquire high-quality multi-contrast images is to accelerate individual sequences and then reconstruct undersampled data with joint regularization terms that leverage common information across contrasts. However, these terms can cause features that are unique to a subset of contrasts to leak into the other contrasts. Such leakage-of-features may appear as artificial tissues, thereby misleading diagnosis. The goal of this study is to develop a compressive sensing method for multi-channel multi-contrast magnetic resonance imaging (MRI) that optimally utilizes shared information while preventing feature leakage. Joint regularization terms group sparsity and colour total variation are used to exploit common features across images while individual sparsity and total variation are also used to prevent leakage of distinct features across contrasts. The multi-channel multi-contrast reconstruction problem is solved via a fast algorithm based on Alternating Direction Method of Multipliers. The proposed method is compared against using only individual and only joint regularization terms in reconstruction. Comparisons were performed on single-channel simulated and multi-channel in-vivo datasets in terms of reconstruction quality and neuroradiologist reader scores. The proposed method demonstrates rapid convergence and improved image quality for both simulated and in-vivo datasets. Furthermore, while reconstructions that solely use joint regularization terms are prone to leakage-of-features, the proposed method reliably avoids leakage via simultaneous use of joint and individual terms, thereby holding great promise for clinical use.


Subject(s)
Magnetic Resonance Imaging , Brain Mapping , Computer Simulation , Humans , Phantoms, Imaging , Signal-To-Noise Ratio
2.
IEEE Trans Med Imaging ; 38(9): 2070-2080, 2019 09.
Article in English | MEDLINE | ID: mdl-30714915

ABSTRACT

Magnetic particle imaging (MPI) is a relatively new medical imaging modality, which detects the nonlinear response of magnetic nanoparticles (MNPs) that are exposed to external magnetic fields. The system matrix (SM) method for MPI image reconstruction requires a time consuming system calibration scan prior to image acquisition, where a single MNP sample is measured at each voxel position in the field-of-view (FOV). The scanned sample has the maximum size of a voxel so that the calibration measurements have relatively poor signal-to-noise ratio (SNR). In this paper, we present the coded calibration scene (CCS) framework, where we place multiple MNP samples inside the FOV in a random or pseudo-random fashion. Taking advantage of the sparsity of the SM, we reconstruct the SM by solving a convex optimization problem with alternating direction method of multipliers using CCS measurements. We analyze the effects of filling rate, number of measurements, and SNR on the SM reconstruction using simulations and demonstrate different implementations of CCS for practical realization. We also compare the imaging performance of the proposed framework with that of a standard compressed sensing SM reconstruction that utilizes a subset of calibration measurements from a single MNP sample. The results show that CCS significantly reduces calibration time while increasing both the SM reconstruction and image reconstruction performances.


Subject(s)
Magnetic Resonance Imaging/methods , Magnetite Nanoparticles/chemistry , Signal Processing, Computer-Assisted , Algorithms , Calibration , Computer Simulation , Phantoms, Imaging , Signal-To-Noise Ratio
3.
Med Phys ; 46(4): 1592-1607, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30695100

ABSTRACT

PURPOSE: Magnetic particle imaging (MPI) is a relatively new method to image the spatial distribution of magnetic nanoparticle (MNP) tracers administered to the body with high spatial and temporal resolution using an inhomogeneous magnetic field. The spatial information of the MNP's is encoded using a field free point (FFP), or a field free line (FFL), in which the magnetic field vanishes at a point, or on a line, respectively. FFL scanning has the advantage of improved sensitivity compared to FFP scanning as a result of higher signal-to-noise ratio. The trajectory traversed by the FFL or FFP is an important parameter of the MPI system and should be selected to achieve the best imaging quality in minimum scan time, while considering hardware constraints and patient safety. In this study, we analyzed the image quality of different FFL trajectories for a large field of view (FOV) using simulations, to provide a baseline information for FFL scanning MPI system design. METHODS: We simulated a human-sized FFL scanning MPI configuration to image a circular FOV with 160 mm diameter, and compared Radial, Spiral, Uniform Spiral, Flower, and Lissajous trajectories with different trajectory densities scanned by the FFL for constant scan time. We analyzed the system matrices of the trajectories in terms of mutual coherence and homogeneity of the spatial sensitivity. We calculated the maximum electric fields induced on a homogeneous conductive body by the selection field (SF) and the focus field (FF) to compare the trajectories based on the nerve stimulation threshold. The images were obtained using the system matrix reconstruction approach with two different image reconstruction methods. In the first one, we used the conventional image reconstruction method, algebraic reconstruction technique (ART), which gives a regularized least-squares solution. In the second one, we used the state-of-the-art alternating direction method of multipliers (ADMM), which minimizes a weighted sum of the l1 -norm and the total variation (TV) of the images. RESULTS: The Radial and Spiral trajectories resulted in a poor imaging performance at low trajectory densities due to relatively high coherency and poor sensitivity of the measurements, respectively. For ART reconstruction, the highest image quality with the lowest trajectory density was achieved with the Uniform Spiral trajectory. Uniform Spiral, Flower, and Lissajous trajectories yielded comparable performance with ADMM reconstruction. The rotating SF induced higher electric field amplitude compared to the FF. Consequently, maximum allowable gradient at the same trajectory density was greater for the Radial trajectory compared to the other trajectories. CONCLUSIONS: For a large FOV coverage, the Uniform Spiral trajectory offers a good compromise between image quality and imaging time, taking safety and hardware limitations into account. The Radial trajectory, especially using l1 -norm and TV priors in the reconstruction, may be favorable in case the SF induced electric field is higher than that of the FF at the same frequency (e.g., relatively small FOV coverage). In general, ADMM reconstruction resulted in higher contrast and resolution compared to ART, leading to lighter requirements on the density of the trajectory.


Subject(s)
Magnetic Fields , Magnetic Resonance Imaging/methods , Magnetite Nanoparticles/chemistry , Phantoms, Imaging , Signal-To-Noise Ratio , Algorithms , Humans , Image Processing, Computer-Assisted/methods
4.
IEEE Trans Med Imaging ; 38(7): 1701-1714, 2019 07.
Article in English | MEDLINE | ID: mdl-30640604

ABSTRACT

A central limitation of multiple-acquisition magnetic resonance imaging (MRI) is the degradation in scan efficiency as the number of distinct datasets grows. Sparse recovery techniques can alleviate this limitation via randomly undersampled acquisitions. A frequent sampling strategy is to prescribe for each acquisition a different random pattern drawn from a common sampling density. However, naive random patterns often contain gaps or clusters across the acquisition dimension that, in turn, can degrade reconstruction quality or reduce scan efficiency. To address this problem, a statistically segregated sampling method is proposed for multiple-acquisition MRI. This method generates multiple patterns sequentially while adaptively modifying the sampling density to minimize k-space overlap across patterns. As a result, it improves incoherence across acquisitions while still maintaining similar sampling density across the radial dimension of k-space. Comprehensive simulations and in vivo results are presented for phase-cycled balanced steady-state free precession and multi-echo [Formula: see text]-weighted imaging. Segregated sampling achieves significantly improved quality in both Fourier and compressed-sensing reconstructions of multiple-acquisition datasets.


Subject(s)
Algorithms , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Humans , Phantoms, Imaging
5.
Article in English | MEDLINE | ID: mdl-22899117

ABSTRACT

The problem studied in this paper is ultrasound image reconstruction from frequency-domain measurements of the scattered field from an object with contrast in attenuation and sound speed. The case in which the object has uniform but unknown contrast in these properties relative to the background is considered. Background clutter is taken into account in a physically realistic manner by considering an exact scattering model for randomly located small scatterers that vary in sound speed. The resulting statistical characteristics of the interference are incorporated into the imaging solution, which includes application of a total-variation minimization-based approach in which the relative effect of perturbation in sound speed to attenuation is included as a parameter. Convex optimization methods provide the basis for the reconstruction algorithm. Numerical data for inversion examples are generated by solving the discretized Lippman-Schwinger equation for the object and speckle-forming scatterers in the background. A statistical model based on the Born approximation is used for reconstruction of the object profile. Results are presented for a two-dimensional problem in terms of classification performance and compared with minimum-l2-norm reconstruction. Classification using the proposed method is shown to be robust down to a signal-to-clutter ratio of less than 1 dB.


Subject(s)
Image Processing, Computer-Assisted/methods , Ultrasonography/methods , Algorithms , Computer Simulation , Models, Statistical , Reproducibility of Results , Signal-To-Noise Ratio , Ultrasonography/instrumentation
6.
Article in English | MEDLINE | ID: mdl-19811993

ABSTRACT

A fast method for computing the acoustic field of ultrasound transducers is presented with application to rectangular elements that are cylindrically focused. No closed-form solutions exist for this case but several numerical techniques have been described in the ultrasound imaging literature. Our motivation is the rapid calculation of imaging kernels for physics-based diagnostic imaging for which current methods are too computationally intensive. Here, the surface integral defining the acoustic field from a baffled piston is converted to a 3-D spatial convolution of the element surface and the Green's function. A 3-D version of the overlap-save method from digital signal processing is employed to obtain a fast computational algorithm based on spatial Fourier transforms. Further efficiency is gained by using a separable approximation to the Green's function through singular value decomposition and increasing the effective sampling rate by polyphase filtering. The tradeoff between accuracy and spatial sampling rate is explored to determine appropriate parameters for a specific transducer. Comparisons with standard tools such as Field II are presented, where nearly 2 orders of magnitude improvement in computation speed is observed for similar accuracy.


Subject(s)
Algorithms , Signal Processing, Computer-Assisted , Ultrasonography/methods , Fourier Analysis , Transducers , Ultrasonography/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...