Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Pharmacol ; 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38825750

ABSTRACT

G protein-coupled receptors (GPCRs) are a large family of cell surface receptors that play a critical role in nervous system function by transmitting signals between cells and their environment. They are involved in many, if not all, nervous system processes, and their dysfunction has been linked to various neurological disorders representing important drug targets. This overview emphasises the GPCRs of the nervous system, which are the research focus of the members of ERNEST COST action (CA18133) working group 'Biological roles of signal transduction'. First, the (patho)physiological role of the nervous system GPCRs in the modulation of synapse function is discussed. We then debate the (patho)physiology and pharmacology of opioid, acetylcholine, chemokine, melatonin and adhesion GPCRs in the nervous system. Finally, we address the orphan GPCRs, their implication in the nervous system function and disease, and the challenges that need to be addressed to deorphanize them.

2.
Mol Cell Biochem ; 478(8): 1813-1824, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36574097

ABSTRACT

Gold nanoparticles (GNPs) have been widely used in medicine such as imaging, drug delivery and therapeutics due to their multifunctional properties. Alterations in neuronal function may contribute to various neurological diseases. Transferrin plays a primary role in iron transportation and delivery and has recently been utilized for drug delivery to the brain. We have investigated effects of transferrin-conjugated GNPs (Tf-GNPs) on anxiety and locomotor behavior in vivo and also hippocampal neuronal activity ex vivo. Electrophysiological effects of Tf-GNP on hippocampal neurons were determined by patch clamp method. Fifteen male young adult C57BL/6 mice were randomly divided into three groups as control (200 µL PBS), GNP (bare GNP; 2.2 µg/g in PBS) and Tf-GNPs (2.2 µg/g Tf-GNP). Animals intraperitoneally received the respective treatments for seven consecutive days and were subjected to elevated plus maze (EPM) and open field tests (OFT). Ex vivo, firing frequency of the neurons significantly increased by GNP treatment (p < 0.001). In vivo, animals in Tf-GNP group showed significantly longer distance in open arms but significantly lower number of entries to the open arms in EPM (p < 0.05). Mice received bare GNPs had significantly higher locomotor activity in OFT (p < 0.05), while Tf-GNP did not alter the locomotor activity significantly (p = 0.051). Animals in Tf-GNP group spent significantly longer time in the peripheral zone in OFT (p < 0.05). The present findings have shown that Tf-GNP induces anxiety-like behavior without altering spontaneous firing rate of hippocampal neurons. We suggest that neurobiological effects of Tf-GNP should be pre-determined before using in medical applications.


Subject(s)
Gold , Metal Nanoparticles , Mice , Male , Animals , Gold/pharmacology , Transferrin , Mice, Inbred C57BL , Anxiety/drug therapy
3.
Cureus ; 14(8): e27895, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36120244

ABSTRACT

Aging and diseases related to aging, such as cancer, have been linked to oxidative stress. On the other hand, calorie restriction (CR) is one of the most effective interventions to slow down aging and prevent a variety of diseases such as cancer in preclinical models. CR has also been reported to modify oxidative stress. The aim of this study was to investigate the effects of different CR protocols and aging on oxidative stress parameters in the MMTV-TGF-α breast cancer mouse model in a cross-sectional study. Female mice were randomly enrolled in three groups: ad libitum (AL), chronic calorie restriction (CCR, 15% CR) or intermittent calorie restriction (ICR, three weeks AL followed by one week 60% CR in cyclic periods) starting at the age of 10 weeks until 81/82 weeks of age. Liver samples were analyzed for malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), glutathione (GSH), and glutathione peroxidase (GSH-Px) levels. At week 49/50, the GSH level increased significantly in the CCR group compared to the AL and ICR-R groups which had higher mammary tumor (MT) incidence rates. Additionally, liver MDA levels in ICR groups were significantly increased, while aging led to decreased CAT and SOD activities in all CR groups. The application of different CR protocols did not have any significant effect on MDA, CAT, and SOD parameters in the liver at week 81/82. These results suggest that although GSH may interfere with MT development at the systemic level, many of the oxidative stress parameters may have more local effects on tumor development than the systemic effects.

4.
Cureus ; 12(1): e6737, 2020 Jan 22.
Article in English | MEDLINE | ID: mdl-32133259

ABSTRACT

Leptin, an adipocytokine, is secreted from various tissues including the liver. The roles of both leptin and leptin receptor (ObR) in numerous pathophysiological conditions including mammary tumor (MT) development have been reported. However, the roles of leptin signaling-related proteins in the liver have not been reported previously in MT development. The objective of this study was to examine the expression levels of leptin and ObR in liver tissue of a transgenic breast cancer mouse model to investigate whether the roles of leptin in MT development are systemic or local. MMTV-TGF-α transgenic female mice were fed ad-libitum from week 10 up to week 74. Protein expression levels of leptin and ObR were measured in liver tissues of 74-week-old MMTV-TGF-α mice with and without MT by western blot. Serum leptin and insulin levels were measured using a enzyme-linked immunosorbent assay. Protein expression levels of leptin and ObR were similar in mice with MT compared to the ones without MT. Serum leptin and insulin levels were also not significantly different between the two groups. These results indicate that the effects of leptin signaling in MT development might be important at a local tissue level, such as mammary fat pad, and not as important at a systemic level.

5.
Int J Genomics ; 2018: 7647980, 2018.
Article in English | MEDLINE | ID: mdl-29511668

ABSTRACT

Calorie restriction (CR), which is a factor that expands lifespan and an important player in immune response, is an effective protective method against cancer development. Thymus, which plays a critical role in the development of the immune system, reacts to nutrition deficiency quickly. RNA-seq-based transcriptome sequencing was performed to thymus tissues of MMTV-TGF-α mice subjected to ad libitum (AL), chronic calorie restriction (CCR), and intermittent calorie restriction (ICR) diets in this study. Three cDNA libraries were sequenced using Illumina HiSeq™ 4000 to produce 100 base pair-end reads. On average, 105 million clean reads were mapped and in total 6091 significantly differentially expressed genes (DEGs) were identified (p < 0.05). These DEGs were clustered into Gene Ontology (GO) categories. The expression pattern revealed by RNA-seq was validated by quantitative real-time PCR (qPCR) analysis of four important genes, which are leptin, ghrelin, Igf1, and adinopectin. RNA-seq data has been deposited in NCBI Gene Expression Omnibus (GEO) database (GSE95371). We report the use of RNA sequencing to find DEGs that are affected by different feeding regimes in the thymus.

6.
J Vasc Res ; 52(2): 103-15, 2015.
Article in English | MEDLINE | ID: mdl-26184661

ABSTRACT

Vasospasm is known to contribute to delayed cerebral ischemia following subarachnoid hemorrhage (SAH). We hypothesized that vasospasm initiates structural changes within the vessel wall, possibly aggravating ischemia and leading to resistance to vasodilator treatment. We therefore investigated the effect of blood on cerebral arteries with respect to contractile activation and vascular remodeling. In vitro experiments on rodent basilar and middle cerebral arteries showed a gradual contraction in response to overnight exposure to blood. After incubation with blood, a clear inward remodeling was found, reducing the caliber of the passive vessel. The transglutaminase inhibitor L682.777 fully prevented this remodeling. Translation of the in vitro findings to an in vivo SAH model was attempted in rats, using both a single prechiasmatic blood injection model and a double cisterna magna injection model, and in mice, using a single prechiasmatic blood injection. However, we found no substantial changes in active or passive biomechanical properties in vivo. We conclude that extravascular blood can induce matrix remodeling in cerebral arteries, which reduces vascular caliber. This remodeling depends on transglutaminase activity. However, the current rodent SAH models do not permit in vivo confirmation of this mechanism.


Subject(s)
Middle Cerebral Artery/physiopathology , Subarachnoid Hemorrhage/physiopathology , Vascular Remodeling , Vasospasm, Intracranial/physiopathology , Animals , Biomechanical Phenomena , Blood Flow Velocity , Cerebrovascular Circulation , Disease Models, Animal , Enzyme Inhibitors/pharmacology , GTP-Binding Proteins/antagonists & inhibitors , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Middle Cerebral Artery/drug effects , Middle Cerebral Artery/enzymology , Middle Cerebral Artery/pathology , Protein Glutamine gamma Glutamyltransferase 2 , Rats, Wistar , Regional Blood Flow , Subarachnoid Hemorrhage/enzymology , Subarachnoid Hemorrhage/genetics , Subarachnoid Hemorrhage/pathology , Transglutaminases/antagonists & inhibitors , Transglutaminases/genetics , Transglutaminases/metabolism , Vascular Remodeling/drug effects , Vasoconstriction , Vasospasm, Intracranial/enzymology , Vasospasm, Intracranial/genetics , Vasospasm, Intracranial/pathology
7.
Clin Sci (Lond) ; 124(12): 719-28, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23330684

ABSTRACT

Increasing evidence shows that sex hormones exert a protective effect on the vasculature, especially in the regulation of the active vasomotor responses. However, whether sex hormones affect vascular remodelling is currently unclear. In the present study, we tested the hypothesis that testosterone in males and ß-oestradiol in females prevent inward remodelling, possibly through inhibition of cross-linking activity induced by enzymes of the TG (transglutaminase) family. Small mesenteric arteries were isolated from male and female Wistar rats. Dose-dependent relaxation to testosterone and ß-oestradiol was inhibited by the NO synthase inhibitor L-NAME (NG-nitro-L-arginine methyl ester), confirming that these hormones induce NO release. When arteries were cannulated, pressurized and kept in organ culture with ET-1 (endothelin-1) for 3 days we observed strong vasoconstriction and inward remodelling. Remodelling was significantly inhibited by testosterone in males, and by ß-oestradiol in females. This preventive effect of sex hormones was not observed in the presence of L-NAME. Inward remodelling was also reduced by the inhibitor of TG L682.777, both in males and females. In arteries from female rats, ET-1 increased TG activity, and this effect was prevented by ß-oestradiol. L-NAME induced a significant increase in TG activity in the presence of sex hormones in arteries from both genders. We conclude that testosterone and ß-oestradiol prevent constriction-induced inward remodelling. Inward remodelling, both in males and females, depends on NO and TG activity. In females, inhibition of inward remodelling could be mediated by NO-mediated inhibition of TG activity.


Subject(s)
Estradiol/pharmacology , Mesenteric Arteries/drug effects , Nitric Oxide/metabolism , Testosterone/pharmacology , Transglutaminases/metabolism , Animals , Dose-Response Relationship, Drug , Endothelin-1/pharmacology , Enzyme Inhibitors/pharmacology , Female , Male , Mesenteric Arteries/enzymology , Mesenteric Arteries/pathology , Myography , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide Synthase/metabolism , Organ Culture Techniques , Rats , Rats, Wistar , Transglutaminases/antagonists & inhibitors , Vasoconstriction/drug effects , Vasoconstrictor Agents/pharmacology
8.
PLoS One ; 6(8): e23067, 2011.
Article in English | MEDLINE | ID: mdl-21901120

ABSTRACT

While inward remodeling of small arteries in response to low blood flow, hypertension, and chronic vasoconstriction depends on type 2 transglutaminase (TG2), the mechanisms of action have remained unresolved. We studied the regulation of TG2 activity, its (sub) cellular localization, substrates, and its specific mode of action during small artery inward remodeling. We found that inward remodeling of isolated mouse mesenteric arteries by exogenous TG2 required the presence of a reducing agent. The effect of TG2 depended on its cross-linking activity, as indicated by the lack of effect of mutant TG2. The cell-permeable reducing agent DTT, but not the cell-impermeable reducing agent TCEP, induced translocation of endogenous TG2 and high membrane-bound transglutaminase activity. This coincided with inward remodeling, characterized by a stiffening of the artery. The remodeling could be inhibited by a TG2 inhibitor and by the nitric oxide donor, SNAP. Using a pull-down assay and mass spectrometry, 21 proteins were identified as TG2 cross-linking substrates, including fibronectin, collagen and nidogen. Inward remodeling induced by low blood flow was associated with the upregulation of several anti-oxidant proteins, notably glutathione-S-transferase, and selenoprotein P. In conclusion, these results show that a reduced state induces smooth muscle membrane-bound TG2 activity. Inward remodeling results from the cross-linking of vicinal matrix proteins, causing a stiffening of the arterial wall.


Subject(s)
Arteries/drug effects , Arteries/metabolism , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/pharmacology , Transglutaminases/metabolism , Transglutaminases/pharmacology , Animals , Calcimycin/pharmacology , Calcium Ionophores/pharmacology , Cell Line , Enzyme Activation/drug effects , GTP-Binding Proteins/genetics , Male , Mice , Mice, Inbred C57BL , Myocytes, Smooth Muscle/metabolism , Protein Glutamine gamma Glutamyltransferase 2 , Recombinant Proteins , Reducing Agents/metabolism , Transglutaminases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...