Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Med Chem Lett ; 10(11): 1524-1529, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31749905

ABSTRACT

Small molecules that inhibit the metabolic enzyme NAMPT have emerged as potential therapeutics in oncology. As part of our effort in this area, we took a scaffold morphing approach and identified 3-pyridyl azetidine ureas as a potent NAMPT inhibiting motif. We explored the SAR of this series, including 5 and 6 amino pyridines, using a convergent synthetic strategy. This lead optimization campaign yielded multiple compounds with excellent in vitro potency and good ADME properties that culminated in compound 27.

2.
Bioorg Med Chem Lett ; 28(3): 365-370, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29275937

ABSTRACT

Nicotinamide phosphoribosyltransferase is a key metabolic enzyme that is a potential target for oncology. Utilizing publicly available crystal structures of NAMPT and in silico docking of our internal compound library, a NAMPT inhibitor, 1, obtained from a phenotypic screening effort was replaced with a more synthetically tractable scaffold. This compound then provided an excellent foundation for further optimization using crystallography driven structure based drug design. From this approach, two key motifs were identified, the (S,S) cyclopropyl carboxamide and the (S)-1-N-phenylethylamide that endowed compounds with excellent cell based potency. As exemplified by compound 27e such compounds could be useful tools to explore NAMPT biology in vivo.


Subject(s)
Amides/pharmacology , Cyclopropanes/pharmacology , Cytokines/antagonists & inhibitors , Drug Design , Enzyme Inhibitors/pharmacology , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Adenosine/analogs & derivatives , Amides/chemical synthesis , Amides/chemistry , Crystallography, X-Ray , Cyclopropanes/chemical synthesis , Cyclopropanes/chemistry , Cytokines/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Molecular Docking Simulation , Molecular Structure , Nicotinamide Phosphoribosyltransferase/metabolism , Phenotype , Structure-Activity Relationship
3.
Assay Drug Dev Technol ; 15(6): 239-246, 2017.
Article in English | MEDLINE | ID: mdl-28800248

ABSTRACT

Since 2011, phenotypic screening has been a trend in the pharmaceutical industry as well as in academia. This renaissance was triggered by analyses that suggested that phenotypic screening is a superior strategy to discover first-in-class drugs. Despite these promises and considerable investments, pharmaceutical research organizations have encountered considerable challenges with the approach. Few success stories have emerged in the past 5 years and companies are questioning their investment in this area. In this contribution, we outline what we have learned about success factors and challenges of phenotypic screening. We then describe how our efforts in phenotypic screening have influenced our approach to drug discovery in general. We predict that concepts from phenotypic screening will be incorporated into target-based approaches and will thus remain influential beyond the current trend.


Subject(s)
Drug Discovery , Drug Evaluation, Preclinical , Phenotype , Animals , Drug Industry , Humans
4.
Sci Rep ; 7: 42728, 2017 02 16.
Article in English | MEDLINE | ID: mdl-28205648

ABSTRACT

Chemogenomic profiling is a powerful and unbiased approach to elucidate pharmacological targets and the mechanism of bioactive compounds. Until recently, genome-wide, high-resolution experiments of this nature have been limited to fungal systems due to lack of mammalian genome-wide deletion collections. With the example of a novel nicotinamide phosphoribosyltransferase (NAMPT) inhibitor, we demonstrate that the CRISPR/Cas9 system enables the generation of transient homo- and heterozygous deletion libraries and allows for the identification of efficacy targets and pathways mediating hypersensitivity and resistance relevant to the compound mechanism of action.


Subject(s)
CRISPR-Cas Systems , Drug Discovery/methods , Enzyme Inhibitors/pharmacology , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Cells, Cultured , Enzyme Inhibitors/chemistry , Gene Deletion , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Nicotinamide Phosphoribosyltransferase/genetics , Pharmacogenomic Testing/methods
5.
Proc Natl Acad Sci U S A ; 110(11): E1026-34, 2013 Mar 12.
Article in English | MEDLINE | ID: mdl-23431153

ABSTRACT

The calcium-activated chloride channel anoctamin 1 (ANO1) is located within the 11q13 amplicon, one of the most frequently amplified chromosomal regions in human cancer, but its functional role in tumorigenesis has remained unclear. The 11q13 region is amplified in ∼15% of breast cancers. Whether ANO1 is amplified in breast tumors, the extent to which gene amplification contributes to ANO1 overexpression, and whether overexpression of ANO1 is important for tumor maintenance have remained unknown. We have found that ANO1 is amplified and highly expressed in breast cancer cell lines and primary tumors. Amplification of ANO1 correlated with disease grade and poor prognosis. Knockdown of ANO1 in ANO1-amplified breast cancer cell lines and other cancers bearing 11q13 amplification inhibited proliferation, induced apoptosis, and reduced tumor growth in established cancer xenografts. Moreover, ANO1 chloride channel activity was important for cell viability. Mechanistically, ANO1 knockdown or pharmacological inhibition of its chloride-channel activity reduced EGF receptor (EGFR) and calmodulin-dependent protein kinase II (CAMKII) signaling, which subsequently attenuated AKT, v-src sarcoma viral oncogene homolog (SRC), and extracellular signal-regulated kinase (ERK) activation in vitro and in vivo. Our results highlight the involvement of the ANO1 chloride channel in tumor progression and provide insights into oncogenic signaling in human cancers with 11q13 amplification, thereby establishing ANO1 as a promising target for therapy in these highly prevalent tumor types.


Subject(s)
Breast Neoplasms/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Chloride Channels/metabolism , Chromosomes, Human, Pair 11/metabolism , Gene Amplification , Neoplasm Proteins/metabolism , Animals , Anoctamin-1 , Apoptosis/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Cell Line, Tumor , Cell Survival/genetics , Chloride Channels/genetics , Chromosomes, Human, Pair 11/genetics , Enzyme Activation/genetics , ErbB Receptors/genetics , ErbB Receptors/metabolism , Female , Gene Knockdown Techniques , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Proteins/genetics , Neoplasm Transplantation , Signal Transduction/genetics , Transplantation, Heterologous
6.
J Biomol Screen ; 18(4): 407-19, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23150017

ABSTRACT

Translation initiation is a fine-tuned process that plays a critical role in tumorigenesis. The use of small molecules that modulate mRNA translation provides tool compounds to explore the mechanism of translational initiation and to further validate protein synthesis as a potential pharmaceutical target for cancer therapeutics. This report describes the development and use of a click beetle, dual luciferase cell-based assay multiplexed with a measure of compound toxicity using resazurin to evaluate the differential effect of natural products on cap-dependent or internal ribosome entry site (IRES)-mediated translation initiation and cell viability. This screen identified a series of cardiac glycosides as inhibitors of IRES-mediated translation using, in particular, the oncogene mRNA c-Myc IRES. Treatment of c-Myc-dependent cancer cells with these compounds showed a decrease in c-Myc protein associated with a significant modulation of cell viability. These findings suggest that inhibition of IRES-mediated translation initiation may be a strategy to inhibit c-Myc-driven tumorigenesis.


Subject(s)
Cardiac Glycosides/analysis , Cardiac Glycosides/pharmacology , Drug Evaluation, Preclinical , Protein Biosynthesis/drug effects , Protein Synthesis Inhibitors/pharmacology , Proto-Oncogene Proteins c-myc/metabolism , Ribosomes/metabolism , Apoptosis/drug effects , Base Sequence , Biological Assay , Cardiac Glycosides/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cymarine/chemistry , Cymarine/pharmacology , DNA Damage , Genes, Reporter , HEK293 Cells , Humans , Inhibitory Concentration 50 , Protein Synthesis Inhibitors/analysis , Protein Synthesis Inhibitors/chemistry , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Ribosomes/drug effects , Vascular Endothelial Growth Factor A/metabolism
7.
Breast Cancer Res ; 10(2): R33, 2008.
Article in English | MEDLINE | ID: mdl-18430202

ABSTRACT

INTRODUCTION: Heat shock protein 90 (HSP90) is a key component of a multichaperone complex involved in the post-translational folding of a large number of client proteins, many of which play essential roles in tumorigenesis. HSP90 has emerged in recent years as a promising new target for anticancer therapies. METHODS: The concentrations of the HSP90 inhibitor NVP-AUY922 required to reduce cell numbers by 50% (GI50 values) were established in a panel of breast cancer cell lines and patient-derived human breast tumors. To investigate the properties of the compound in vivo, the pharmacokinetic profile, antitumor effect, and dose regimen were established in a BT-474 breast cancer xenograft model. The effect on HSP90-p23 complexes, client protein degradation, and heat shock response was investigated in cell culture and breast cancer xenografts by immunohistochemistry, Western blot analysis, and immunoprecipitation. RESULTS: We show that the novel small molecule HSP90 inhibitor NVP-AUY922 potently inhibits the proliferation of human breast cancer cell lines with GI50 values in the range of 3 to 126 nM. NVP-AUY922 induced proliferative inhibition concurrent with HSP70 upregulation and client protein depletion--hallmarks of HSP90 inhibition. Intravenous acute administration of NVP-AUY922 to athymic mice (30 mg/kg) bearing subcutaneous BT-474 breast tumors resulted in drug levels in excess of 1,000 times the cellular GI50 value for about 2 days. Significant growth inhibition and good tolerability were observed when the compound was administered once per week. Therapeutic effects were concordant with changes in pharmacodynamic markers, including HSP90-p23 dissociation, decreases in ERBB2 and P-AKT, and increased HSP70 protein levels. CONCLUSION: NVP-AUY922 is a potent small molecule HSP90 inhibitor showing significant activity against breast cancer cells in cellular and in vivo settings. On the basis of its mechanism of action, preclinical activity profile, tolerability, and pharmaceutical properties, the compound recently has entered clinical phase I breast cancer trials.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Isoxazoles/pharmacology , Resorcinols/pharmacology , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Blotting, Western , Breast Neoplasms/metabolism , Cell Line, Tumor , Disease Models, Animal , Female , Gene Expression Regulation, Neoplastic/drug effects , HSP70 Heat-Shock Proteins/metabolism , Humans , Immunohistochemistry , Immunoprecipitation , Isoxazoles/administration & dosage , Isoxazoles/pharmacokinetics , Mice , Mice, Nude , Molecular Chaperones , Proto-Oncogene Proteins c-akt/metabolism , Receptor, ErbB-2/metabolism , Receptors, Estrogen/metabolism , Resorcinols/administration & dosage , Resorcinols/pharmacokinetics , Transplantation, Heterologous , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...