Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Data Brief ; 54: 110386, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38646196

ABSTRACT

Respiratory data was collected from 20 subjects, with an even sex distribution, in the low-risk clinical unit at the University of Canterbury. Ethical consent for this trial was granted by the University of Canterbury Human Research Ethics Committee (Ref: HREC 2023/30/LR-PS). Respiratory data were collected, for each subject, over three tests consisting of: 1) increasing set PEEP from a starting point of ZEEP using a CPAP machine; 2) test 1 repeated with two simulated apnoea's (breath holds) at each set PEEP; and 3) three forced expiratory manoeuvres at ZEEP. Data were collected using a custom pressure and flow sensor device, ECG, PPG, Garmin HRM Dual heartrate belt, and a Dräeger PulmoVista 500 Electrical Impedance Tomography (EIT) machine. Subject demographic data was also collected prior to the trial, in a questionnaire, with measurement equipment available. These data aim to inform the development of pulmonary mechanics models and titration algorithms.

2.
HardwareX ; 17: e00512, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38333423

ABSTRACT

Respiratory disease is a major contributor to healthcare costs, as well as increasing morbidity and early mortality. The device presented is used to simulate the effects of Chronic Obstructive Pulmonary Disease (COPD) in healthy people. The intended use is to provide data equivalent to COPD data measured from those who are ill for initial validation of respiratory mechanics models. It would thus eliminate the need to test unhealthy and/or fragile subjects, or the need for invasive or costly equipment based test methods. The device is used in conjunction with an open-access venturi-based flow sensor, to measure pressure, flow, and breath tidal volume. The device simulates the pressure and flow profiles of a person who has COPD including the non-linear increased resistance to end-exhalation and gas trapping. To achieve this non-linearity, a combination of high and low resistance outlets is used. Thus, the simulator allows the collection of patient-specific COPD-like breathing data in a non-invasive manner from healthy subjects. The device is low-cost with the majority of the parts 3D printed using a Prusa mini 3D printer and PLA filament.

3.
Data Brief ; 52: 109903, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38161653

ABSTRACT

The breathing dataset presented is collected from 20 healthy individuals at the University of Canterbury using a device to simulate the pressure and flow profiles of obstructive pulmonary disease. Specifically, the expiratory non-linear resistance, which generates the characteristic expiratory pressure-flow loop lobe seen in obstructive disease. Ethical consent for the trial was granted by the University of Canterbury Human Research Ethics Committee (Ref: HREC 2022/26/LR). Data was collected using an open-source data collection device connected to a Fisher and Paykel Healthcare SleepStyle SPSCAA CPAP. The trial was conducted at CPAP PEEP levels of 4 and 8 cmH2O, as well as at ZEEP (0 cmH2O) with no CPAP attached. The simulation device was a modular device connected to the expiratory pathway, consisting of a free volume diversion and fixed high resistance outlet. Three simulation levels were selected for testing, achieved by changing the size of the elastic free volume. The intended use of this dataset is for the initial validation and development of respiratory pulmonary mechanics models, using data collected from healthy people with simulated disease prior to clinical testing.

4.
Data Brief ; 52: 109874, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38146285

ABSTRACT

Resting breathing data was collected from 80 smokers, vapers, asthmatics, and otherwise healthy people in the low-risk clinical unit at the University of Canterbury. Subjects were asked to breathe normally through a full-face mask connected to a Fisher and Paykel Healthcare SleepStyle SPSCAA CPAP device. PEEP (Positive End-Expiratory Pressure) support was increased from 4 to 12 cmH2O in 0.5 cmH2O increments. Data was also collected during resting breathing at ZEEP (0 cmH2O) before and after the PEEP trial. The trial was conducted under University of Canterbury Human Research Ethics Committee consent (Ref: HREC 2023/04/LR-PS). Data was collected by and Dräeger PulmoVista 500 EIT machine and a custom Venturi-based pressure and flow sensor device connected in series with the CPAP and full-face mask. The outlined dataset includes pressure, flow, volume, dynamic circumference (thoracic and abdominal, and cross-sectional aeration. Subject demographic data was self-reported using a questionnaire given prior to the trial.

5.
HardwareX ; 16: e00489, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38058767

ABSTRACT

Respiratory model-based methods require datasets containing enough dynamics to ensure model identifiability for development and validation. Rapid expiratory occlusion has been used to identify elastance and resistance within a single breath. Currently accepted practice for rapid expiratory occlusion involves a 100 ms occlusion of the expiratory pathway. This article presents a low-cost modular rapid shutter attachment to enable identification of passive respiratory mechanics. Shuttering faster than 100 ms creates rapid expiratory occlusion without the added dynamics of muscular response to shutter closure, by eliminating perceived expiratory blockage via high shutter speed. The shutter attachment fits onto a non-invasive venturi-based flow meter with separated inspiratory and expiratory pathways, established using one-way valves. Overall, these elements allow comprehensive collection of respiratory pressure and flow datasets with relatively very rapid expiratory occlusion.

6.
Sensors (Basel) ; 23(24)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38139620

ABSTRACT

(1) Background: Technically, a simple, inexpensive, and non-invasive method of ascertaining volume changes in thoracic and abdominal cavities are required to expedite the development and validation of pulmonary mechanics models. Clinically, this measure enables the real-time monitoring of muscular recruitment patterns and breathing effort. Thus, it has the potential, for example, to help differentiate between respiratory disease and dysfunctional breathing, which otherwise can present with similar symptoms such as breath rate. Current automatic methods of measuring chest expansion are invasive, intrusive, and/or difficult to conduct in conjunction with pulmonary function testing (spontaneous breathing pressure and flow measurements). (2) Methods: A tape measure and rotary encoder band system developed by the authors was used to directly measure changes in thoracic and abdominal circumferences without the calibration required for analogous strain-gauge-based or image processing solutions. (3) Results: Using scaling factors from the literature allowed for the conversion of thoracic and abdominal motion to lung volume, combining motion measurements correlated to flow-based measured tidal volume (normalised by subject weight) with R2 = 0.79 in data from 29 healthy adult subjects during panting, normal, and deep breathing at 0 cmH2O (ZEEP), 4 cmH2O, and 8 cmH2O PEEP (positive end-expiratory pressure). However, the correlation for individual subjects is substantially higher, indicating size and other physiological differences should be accounted for in scaling. The pattern of abdominal and chest expansion was captured, allowing for the analysis of muscular recruitment patterns over different breathing modes and the differentiation of active and passive modes. (4) Conclusions: The method and measuring device(s) enable the validation of patient-specific lung mechanics models and accurately elucidate diaphragmatic-driven volume changes due to intercostal/chest-wall muscular recruitment and elastic recoil.


Subject(s)
Respiratory Mechanics , Thoracic Wall , Adult , Humans , Respiratory Mechanics/physiology , Diaphragm/physiology , Lung/physiology , Abdomen
7.
Sci Data ; 10(1): 481, 2023 07 22.
Article in English | MEDLINE | ID: mdl-37481681

ABSTRACT

Continuous positive airway pressure (CPAP) ventilation is a commonly prescribed respiratory therapy providing positive end-expiratory pressure (PEEP) to assist breathing and prevent airway collapse. Setting PEEP is highly debated and it is thus primarily titrated based on symptoms of excessive or insufficient support. However, titration periods are clinician intensive and can result in barotrauma or under-oxygenation during the process. Developing model-based methods to more efficiently personalise CPAP therapy based on patient-specific response requires clinical data of lung/CPAP interactions. To this end, a trial was conducted to establish a dataset of healthy subjects lung/CPAP interaction. Pressure, flow, and tidal volume were recorded alongside secondary measures of dynamic chest and abdominal circumference, to better validate model outcomes and assess breathing modes, muscular recruitment, and effort. N = 30 subjects (15 male; 15 female) were included. Self-reported asthmatics and smokers/vapers were included, offering a preliminary assessment of any potential differences in response to CPAP from lung stiffness changes in these scenarios. Additional demographics associated with lung function (sex, age, height, and weight) were also recorded.


Subject(s)
Abdomen , Continuous Positive Airway Pressure , Respiratory Rate , Adult , Female , Humans , Male , Lung , Thorax
8.
Comput Biol Med ; 152: 106430, 2023 01.
Article in English | MEDLINE | ID: mdl-36543001

ABSTRACT

BACKGROUND: Current methods to diagnose and monitor COPD employ spirometry as the gold standard to identify lung function reduction with reduced forced expiratory volume (FEV1)/vital capacity (VC) ratio. Current methods utilise linear assumptions regarding airway resistance, where nonlinear resistance modelling may provide rapid insight into patient specific condition and disease progression. This study examines model-based expiratory resistance in healthy lungs and those with progressively more severe COPD. METHODS: Healthy and COPD pressure (P)[cmH2O] and flow (Q)[L/s] data is obtained from the literature, and 5 intermediate levels of COPD and responses are created to simulate COPD progression and assess model-based metric resolution. Linear and nonlinear single compartment models are used to identify changes in inspiratory (R1,insp) and linear (R1,exp)/nonlinear (R2Φ) expiratory resistance with disease severity and over the course of expiration. RESULTS: R1,insp increases from 2.1 to 7.3 cmH2O/L/s, R1,exp increases from 2.4 to 10.0 cmH2O/L/s with COPD severity. Nonlinear R2Φ increases (mean R2Φ: 2.5 cmH2O/L/s (healthy) to 24.4 cmH2O/L/s (COPD)), with increasing end-expiratory nonlinearity as COPD severity increases. CONCLUSION: Expiratory resistance is increasingly highly nonlinear with COPD severity. These results show a simple, nonlinear model can capture fundamental COPD dynamics and progression from regular breathing data, and such an approach may be useful for patient-specific diagnosis and monitoring.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/diagnosis , Lung , Airway Resistance/physiology , Forced Expiratory Volume , Exhalation
9.
HardwareX ; 12: e00354, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36082149

ABSTRACT

Non-invasive pressure and flow data from Venturi-based sensors can be used with validated models to identify patient-specific lung mechanics. To validate applied respiratory models a secondary measurement is required. Rotary encoder-based tape measures were designed to capture change in circumference of a subject's thorax and diaphragm. Circumferential changes can be correlated to measured or modelled change in lung volume and associated muscular recruitment measures (patient work of breathing). Hence, these simple measurement devices can expedite respiratory research, by adding low-cost, accessible, and clinically useful measurements.

10.
BMC Res Notes ; 15(1): 257, 2022 Jul 16.
Article in English | MEDLINE | ID: mdl-35842701

ABSTRACT

OBJECTIVES: A unique dataset of airway flow/pressure from healthy subjects on Continuous Positive Airway Pressure (CPAP) ventilation was collected. This data can be used to develop or validate models of pulmonary mechanics, and/or to develop methods to identify patient-specific parameters which cannot be measured non-invasively, during CPAP therapy. These models and values, particularly if available breath-to-breath in real-time, could assist clinicians in the prescription or optimisation of CPAP therapy, including optimising PEEP settings. DATA DESCRIPTION: Data was obtained from 30 subjects for model-based identification of patient-specific lung mechanics using a specially designed venturi sensor system comprising an array of differential and gauge pressure sensors. Relevant medical information was collected using a questionnaire, including: sex; age; weight; height; smoking history; and history of asthma. Subjects were tasked with breathing at five different rates (including passive), matched to an online pacing sound and video, at two different levels of PEEP (4 and 7 cmH2O) for between 50 and 180 s. Each data set comprises ~ 17 breaths of data, including rest periods between breathing rates and CPAP levels.


Subject(s)
Continuous Positive Airway Pressure , Respiration , Adult , Humans , Respiratory Rate
11.
Comput Biol Med ; 142: 105225, 2022 03.
Article in English | MEDLINE | ID: mdl-35032739

ABSTRACT

BACKGROUND: The intrinsic (muscular) patient effort driving inspiration in non-invasive ventilation modes, such as continuous positive airway pressure (CPAP) therapy, has not been identified from non-invasive data. Current CPAP settings are based on clinical judgment and assessment of symptoms of respiratory distress. Non-optimal settings, including too much positive end expiratory pressure (PEEP) can cause unintended lung injury and ventilator unloading, where patient effort drops and the CPAP device enables too much work being imposed on the injured lung. Currently, there is no non-invasive means of quantifying or identifying these effects. METHODS: A novel model-based method of ascertaining intrinsic patient work of breathing (WOB) in CPAP is developed based on linear single compartment and 2nd order b-spline models previously used in invasive ventilation modes. Results are compared to current clinical indications, such as total Imposed WOB from the CPAP device and beak length, the latter of which is the clinical metric used to indicate alveolar overdistension. Intrinsic and Imposed WOB are compared. The hypothesis is that ventilator unloading can be assessed as a decrease in Intrinsic WOB relative to Imposed WOB, as PEEP and associated ventilator unloading rise. This hypothesis is tested using 14 subjects from a CPAP trial of several breathing rates at two PEEP levels. RESULTS: The ratio of Intrinsic to Imposed WOB, normalised per unit tidal volume, decreased with increasing PEEP (4-7 cm H2O), capturing the expected trend of ventilator unloading. Ventilator unloading was observed across all breathing rates. Beak length measurements showed no conclusive evidence of capturing overdistension at higher PEEP or ventilator unloading. CONCLUSIONS: Patient Intrinsic WOB in CPAP was non-invasively quantified using model-based methods, based on pressure and flow measurements. The ratio of Intrinsic to Imposed WOB per unit tidal volume clearly and consistently showed ventilator unloading across all patients and breathing rates, with Intrinsic WOB decreasing with increasing PEEP. This trend was not observed in the current clinical metric of beak length. Non-invasively quantifying Intrinsic WOB and ventilator unloading is the critical first step to objectively optimising clinical CPAP settings, patient care, and outcomes.


Subject(s)
Continuous Positive Airway Pressure , Work of Breathing , Animals , Humans , Respiration, Artificial , Tidal Volume , Ventilators, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...