Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Chim Acta ; 420: 82-8, 2013 May.
Article in English | MEDLINE | ID: mdl-23107929

ABSTRACT

BACKGROUND: Cardiac troponin I (cTnI) is the current standard biomarker for diagnosing acute myocardial infarction and for risk-stratification of acute coronary syndromes in patients. However, it remains unclear how the epitope specificity of antibodies in immunoassays influences the detection of various modified forms of cTnI. METHODS: Four mouse anti-human cTnI monoclonal antibodies targeting different regions of human cTnI were chosen for immunoaffinity purification of cTnI from human and swine cardiac tissue. High-resolution intact protein mass spectrometry was employed to assess the comparative performance of these four antibodies in detecting modified forms of cTnI. RESULTS: Our data revealed that antibody selection significantly impacts the relative protein yield of cTn from immunoaffinity purification. Remarkably, a single amino acid variation in cTnI (G->S) in the epitope region completely abolished the binding between monoclonal antibody 560 and swine cTnI in solution. Moreover, proteolytic degradation around the epitope region severely compromised the detection of proteolytic fragment forms of cTnI by monoclonal antibodies. In contrast, the phosphorylation status near the epitope region did not significantly affect the antibody recognition of cTnI. CONCLUSION: Caution needs to be taken in the interpretation of the data produced by immuno-assays with monoclonal antibodies against various epitopes of cTnI.


Subject(s)
Antibodies, Monoclonal/metabolism , Troponin I/metabolism , Amino Acid Sequence , Animals , Epitopes/chemistry , Humans , Immunoassay , Mass Spectrometry , Mice , Molecular Sequence Data , Myocardium/metabolism , Swine , Troponin I/analysis
2.
J Proteome Res ; 10(9): 4054-65, 2011 Sep 02.
Article in English | MEDLINE | ID: mdl-21751783

ABSTRACT

The rapid increase in the prevalence of chronic heart failure (CHF) worldwide underscores an urgent need to identify biomarkers for the early detection of CHF. Post-translational modifications (PTMs) are associated with many critical signaling events during disease progression and thus offer a plethora of candidate biomarkers. We have employed a top-down quantitative proteomics methodology for comprehensive assessment of PTMs in whole proteins extracted from normal and diseased tissues. We systematically analyzed 36 clinical human heart tissue samples and identified phosphorylation of cardiac troponin I (cTnI) as a candidate biomarker for CHF. The relative percentages of the total phosphorylated cTnI forms over the entire cTnI populations (%P(total)) were 56.4 ± 3.5%, 36.9 ± 1.6%, 6.1 ± 2.4%, and 1.0 ± 0.6% for postmortem hearts with normal cardiac function (n = 7), early stage of mild hypertrophy (n = 5), severe hypertrophy/dilation (n = 4), and end-stage CHF (n = 6), respectively. In fresh transplant samples, the %P(total) of cTnI from nonfailing donor (n = 4), and end-stage failing hearts (n = 10) were 49.5 ± 5.9% and 18.8 ± 2.9%, respectively. Top-down MS with electron capture dissociation unequivocally localized the altered phosphorylation sites to Ser22/23 and determined the order of phosphorylation/dephosphorylation. This study represents the first clinical application of top-down MS-based quantitative proteomics for biomarker discovery from tissues, highlighting the potential of PTMs as disease biomarkers.


Subject(s)
Biomarkers/analysis , Heart Failure/metabolism , Myocardium/chemistry , Proteomics/methods , Troponin I/analysis , Amino Acid Sequence , Biomarkers/chemistry , Chronic Disease , Humans , Linear Models , Mass Spectrometry , Molecular Sequence Data , Phenotype , Phosphorylation , Protein Processing, Post-Translational , Troponin I/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...