Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Diabetes Care ; 43(2): 418-425, 2020 02.
Article in English | MEDLINE | ID: mdl-31843946

ABSTRACT

OBJECTIVE: The MHC region harbors the strongest loci for latent autoimmune diabetes in adults (LADA); however, the strength of association is likely attenuated compared with that for childhood-onset type 1 diabetes. In this study, we recapitulate independent effects in the MHC class I region in a population with type 1 diabetes and then determine whether such conditioning in LADA yields potential genetic discriminators between the two subtypes within this region. RESEARCH DESIGN AND METHODS: Chromosome 6 was imputed using SNP2HLA, with conditional analysis performed in type 1 diabetes case subjects (n = 1,985) and control subjects (n = 2,219). The same approach was applied to a LADA cohort (n = 1,428) using population-based control subjects (n = 2,850) and in a separate replication cohort (656 type 1 diabetes case, 823 LADA case, and 3,218 control subjects). RESULTS: The strongest associations in the MHC class II region (rs3957146, ß [SE] = 1.44 [0.05]), as well as the independent effect of MHC class I genes, on type 1 diabetes risk, particularly HLA-B*39 (ß [SE] = 1.36 [0.17]), were confirmed. The conditional analysis in LADA versus control subjects showed significant association in the MHC class II region (rs3957146, ß [SE] = 1.14 [0.06]); however, we did not observe significant independent effects of MHC class I alleles in LADA. CONCLUSIONS: In LADA, the independent effects of MHC class I observed in type 1 diabetes were not observed after conditioning on the leading MHC class II associations, suggesting that the MHC class I association may be a genetic discriminator between LADA and childhood-onset type 1 diabetes.


Subject(s)
Diabetes Mellitus, Type 1/genetics , Genes, MHC Class II/genetics , Genes, MHC Class I/genetics , Genetic Testing , Latent Autoimmune Diabetes in Adults/genetics , Adolescent , Adult , Age of Onset , Alleles , Case-Control Studies , Child , Child, Preschool , Chromosomes, Human, Pair 6/genetics , Cohort Studies , Diabetes Mellitus, Type 1/classification , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/epidemiology , Diagnosis, Differential , Female , Genetic Association Studies , Genetic Testing/methods , Humans , Latent Autoimmune Diabetes in Adults/classification , Latent Autoimmune Diabetes in Adults/diagnosis , Male , Polymorphism, Single Nucleotide , Young Adult
2.
Diabetes Care ; 41(11): 2396-2403, 2018 11.
Article in English | MEDLINE | ID: mdl-30254083

ABSTRACT

OBJECTIVE: Latent autoimmune diabetes in adults (LADA) shares clinical features with both type 1 and type 2 diabetes; however, there is ongoing debate regarding the precise definition of LADA. Understanding its genetic basis is one potential strategy to gain insight into appropriate classification of this diabetes subtype. RESEARCH DESIGN AND METHODS: We performed the first genome-wide association study of LADA in case subjects of European ancestry versus population control subjects (n = 2,634 vs. 5,947) and compared against both case subjects with type 1 diabetes (n = 2,454 vs. 968) and type 2 diabetes (n = 2,779 vs. 10,396). RESULTS: The leading genetic signals were principally shared with type 1 diabetes, although we observed positive genetic correlations genome-wide with both type 1 and type 2 diabetes. Additionally, we observed a novel independent signal at the known type 1 diabetes locus harboring PFKFB3, encoding a regulator of glycolysis and insulin signaling in type 2 diabetes and inflammation and autophagy in autoimmune disease, as well as an attenuation of key type 1-associated HLA haplotype frequencies in LADA, suggesting that these are factors that distinguish childhood-onset type 1 diabetes from adult autoimmune diabetes. CONCLUSIONS: Our results support the need for further investigations of the genetic factors that distinguish forms of autoimmune diabetes as well as more precise classification strategies.


Subject(s)
Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 2/genetics , Genome-Wide Association Study , Immune System Phenomena/genetics , Latent Autoimmune Diabetes in Adults/genetics , Adult , Aged , Case-Control Studies , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 2/immunology , Diabetes Mellitus, Type 2/metabolism , Female , Glucose Intolerance/genetics , Glucose Intolerance/immunology , Glucose Intolerance/metabolism , Haplotypes , Humans , Insulin/metabolism , Latent Autoimmune Diabetes in Adults/immunology , Latent Autoimmune Diabetes in Adults/metabolism , Male , Middle Aged , Young Adult
3.
BMC Med ; 15(1): 88, 2017 04 25.
Article in English | MEDLINE | ID: mdl-28438156

ABSTRACT

BACKGROUND: In adulthood, autoimmune diabetes can present as non-insulin-requiring diabetes, termed as 'latent autoimmune diabetes in adults' (LADA). In this study, we investigated established type 1 diabetes (T1D) and type 2 diabetes (T2D) genetic loci in a large cohort of LADA cases to assess where LADA is situated relative to these two well-characterized, classic forms of diabetes. METHODS: We tested the association of T1D and T2D GWAS-implicated loci in 978 LADA cases and 1057 non-diabetic controls of European ancestry using a linear mixed model. We then compared the associations of T1D and T2D loci between LADA and T1D and T2D cases, respectively. We quantified the difference in genetic risk between each given disease at each locus, and also calculated genetic risk scores to quantify how genetic liability to T1D and T2D distinguished LADA cases from controls. RESULTS: Overall, our results showed that LADA is genetically more similar to T1D, with the exception of an association at the T2D HNF1A locus. Several T1D loci were associated with LADA, including the major histocompatibility complex region, as well as at PTPN22, SH2B3, and INS. Contrary to previous studies, the key T2D risk allele at TCF7L2 (rs7903146-T) had a significantly lower frequency in LADA cases, suggesting that this locus does not play a role in LADA etiology. When constrained on antibody status, the similarity between LADA and T1D became more apparent; however, the HNF1A and TCF7L2 observations persisted. CONCLUSION: LADA is genetically closer to T1D than T2D, although the genetic load of T1D risk alleles is less than childhood-onset T1D, particularly at the major histocompatibility complex region, potentially accounting for the later disease onset. Our results show that the genetic spectrum of T1D extends into adult-onset diabetes, where it can clinically masquerade as T2D. Furthermore, T2D genetic risk plays a small role in LADA, with a degree of evidence for the HNF1A locus, highlighting the potential for genetic risk scores to contribute towards defining diabetes subtypes.


Subject(s)
Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 2/genetics , Adult , Aged , Alleles , Humans , Middle Aged , Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics
4.
BMJ Open Diabetes Res Care ; 2(1): e000052, 2014.
Article in English | MEDLINE | ID: mdl-25469308

ABSTRACT

BACKGROUND: The transcription factor 7-like 2 (TCF7L2) locus is strongly implicated in the pathogenesis of type 2 diabetes (T2D). We previously mapped the genomic regions bound by TCF7L2 using ChIP (chromatin immunoprecipitation)-seq in the colorectal carcinoma cell line, HCT116, revealing an unexpected highly significant over-representation of genome-wide association studies (GWAS) loci associated primarily with endocrine (in particular T2D) and cardiovascular traits. METHODS: In order to further explore if this observed phenomenon occurs in other cell lines, we carried out ChIP-seq in HepG2 cells and leveraged ENCODE data for five additional cell lines. Given that only a minority of the predicted genetic component to most complex traits has been identified to date, plus our GWAS-related observations with respect to TCF7L2 occupancy, we investigated if restricting association analyses to the genes yielded from this approach, in order to reduce the constraints of multiple testing, could reveal novel T2D loci. RESULTS: We found strong evidence for the continued enrichment of endocrine and cardiovascular GWAS categories, with additional support for cancer. When investigating all the known GWAS loci bound by TCF7L2 in the shortest gene list, derived from HCT116, the coronary artery disease-associated variant, rs46522 at the UBE2Z-GIP-ATP5G1-SNF8 locus, yielded significant association with T2D within DIAGRAM. Furthermore, when we analyzed tag-SNPs (single nucleotide polymorphisms) in genes not previously implicated by GWAS but bound by TCF7L2 within 5 kb, we observed a significant association of rs4780476 within CPPED1 in DIAGRAM. CONCLUSIONS: ChIP-seq data generated with this GWAS-implicated transcription factor provided a biologically plausible method to limit multiple testing in the assessment of genome-wide genotyping data to uncover two novel T2D-associated loci.

5.
Curr Diab Rep ; 14(11): 550, 2014.
Article in English | MEDLINE | ID: mdl-25189437

ABSTRACT

Despite the notion that there is a degree of commonality to the biological etiology of type 1 diabetes (T1D) and type 2 diabetes (T2D), the lack of overlap in the genetic factors underpinning each of them suggests very distinct mechanisms. A disorder considered to be at the "intersection" of these two diseases is "latent autoimmune diabetes in adults" (LADA). Interestingly, genetic signals from both T1D and T2D are also seen in LADA, including the key HLA and transcription factor 7-like 2 (TCF7L2) loci, but the magnitudes of these effects are more complex than just pointing to LADA as being a simple admixture of T1D and T2D. We review the current status of the understanding of the genetics of LADA and place it in the context of what is known about the genetics of its better-studied "cousins," T1D and T2D, especially with respect to the myriad of discoveries made over the last decade through genome-wide association studies.


Subject(s)
Autoantibodies/blood , Autoimmunity , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 2/genetics , TCF Transcription Factors/genetics , Diabetes Mellitus, Type 1/epidemiology , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/immunology , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Polymorphism, Single Nucleotide , Transcription Factor 7-Like 2 Protein/genetics
6.
Stem Cells ; 27(12): 2952-61, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19750538

ABSTRACT

Parkinson's disease (PD) is characterized by the selective loss of midbrain dopamine neurons. Neural transplantation with fetal dopamine neurons can be an effective therapy for patients with PD, but recovery of human fetal cells is difficult. Scarcity of tissue has limited clinical application to a small number of research subjects worldwide. Selective differentiation of embryonic stem cells (ESCs) to dopamine neurons could lead to an unlimited supply of cells for expanded clinical transplantation. To facilitate the differentiation and purification of dopamine neurons, the green fluorescent protein (GFP) gene was inserted into the dopamine transporter (DAT) locus in mouse ESCs using homologous recombination. From these DAT-GFP ESCs, dopamine neurons expressing GFP were successfully produced by in vitro differentiation. The DAT-GFP ESCs were used to generate DAT-GFP knock-in mice. We have found that GFP was colocalized with DAT, Pitx3, Engrailed-1, and tyrosine hydroxylase-positive cells in midbrain, hypothalamus, and olfactory bulb but not in noradrenergic cell regions or other ectopic sites. The GFP-positive dopamine neurons could be isolated from embryonic day-15 ventral midbrain by fluorescence activated cell sorting. These purified dopamine neurons survived reculture and expressed tyrosine hydroxylase and DAT when cocultured with mouse astrocytes or striatal cells. Animals homozygous for DAT-GFP were hyperactive because they had no functional DAT protein. These DAT-GFP knock-in ESCs and mice provide unique tools for purifying dopamine neurons to study their physiology, pharmacology, and genetic profiles.


Subject(s)
Dopamine Plasma Membrane Transport Proteins/metabolism , Embryonic Stem Cells/metabolism , Genes, Reporter , Green Fluorescent Proteins/metabolism , Neurons/metabolism , Animals , Cell Culture Techniques , Cell Differentiation , Cells, Cultured , Coculture Techniques , Dopamine Plasma Membrane Transport Proteins/genetics , Embryonic Stem Cells/cytology , Female , Gene Knock-In Techniques , Green Fluorescent Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/cytology , Tissue Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...