Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Phys Chem B ; 124(39): 8690-8703, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32866389

ABSTRACT

Sorption hysteresis in nanoporous polymer is an intriguing phenomenon that involves coupling between sorption and deformation. Based on the mechanism revealed at the microscopic level by use of molecular simulation, a poromechanical model is developed capturing all relevant physics and yielding a quantitative description. In this model, the coupling between sorption and deformation is described by a poromechanics framework. More in detail, an upscaling process from the molecular mechanism is implemented to model the hysteresis through the state change of each element upon deformation. We provide two solutions of the model: a numerical one based on the finite element method and an analytical one based on uniform strain assumption. The results from both solutions agree well with the molecular simulation and experimental results, therefore capturing and describing adequately sorption hysteresis. The developed model illustrates that water forms different structural distributions upon adsorption and desorption. A parametric study shows that sorption hysteresis is influenced by material properties. We find that a softer material with stronger adsorbent-adsorbate interaction tends to exhibit more profound sorption hysteresis. The developed model, which relies on the concepts of sorption-deformation coupling and multiscale modeling from atomistic simulations to domain dependent theory, paves the way for a new direction of modeling sorption hysteresis.

2.
Cellulose (Lond) ; 27(1): 89-99, 2020.
Article in English | MEDLINE | ID: mdl-32009745

ABSTRACT

The use of natural sustainable resources such as wood in green industrial processes is currently limited by our poor understanding of the impact of moisture on their thermodynamic and mechanical behaviors. Here, a molecular dynamics approach is used to investigate the physical response of a typical hydrophilic biopolymer in softwood hemicellulose-xylan-when subjected to moisture adsorption. A unique moisture-induced crossover is found in the thermodynamic and mechanical properties of this prototypical biopolymer with many quantities such as the heat of adsorption, heat capacity, thermal expansion and elastic moduli exhibiting a marked evolution change for a moisture content about 30 wt%. By investigating the microscopic structure of the confined water molecules and the polymer-water interfacial area, the molecular mechanism responsible for this crossover is shown to correspond to the formation of a double-layer adsorbed film along the amorphous polymeric chains. In addition to this moisture-induced crossover, many properties of the hydrated biopolymer are found to obey simple material models.

3.
Phys Rev Lett ; 123(4): 048003, 2019 Jul 26.
Article in English | MEDLINE | ID: mdl-31491281

ABSTRACT

A numerical scheme using the combined finite-discrete element method is employed to study a model of an earthquake system comprising a granular layer embedded in a formation. When the formation is driven so as to shear the granular layer, a system of stress chains emerges. The stress chains endow the layer with resistance to shear and on failure launch broadcasts into the formation. These broadcasts, received as acoustic emission, provide a remote monitor of the state of the granular layer of the earthquake system.

4.
Ultrasonics ; 98: 51-61, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31200274

ABSTRACT

Numerical simulation of nonlinear elastic wave propagation in solids with cracks is indispensable for decoding the complicated mechanisms associated with the nonlinear ultrasonic techniques in Non-Destructive Testing (NDT). Here, we introduce a two-dimensional implementation of the combined finite-discrete element method (FDEM), which merges the finite element method (FEM) and the discrete element method (DEM), to explicitly simulate the crack induced nonlinear elasticity in solids with both horizontal and inclined cracks. In the FDEM model, the solid is discretized into finite elements to capture the wave propagation in the bulk material, and the finite elements along the two sides of the crack also behave as discrete elements to track the normal and tangential interactions between crack surfaces. The simulation results show that for cracked models, nonlinear elasticity is generated only when the excitation amplitude is large enough to trigger the contact between crack surfaces, and the nonlinear behavior is very sensitive to the crack surface contact. The simulations reveal the influence of normal and tangential contact on the nonlinear elasticity generation. Moreover, the results demonstrate the capabilities of FDEM for decoding the causality of nonlinear elasticity in cracked solid and its potential to assist in Non-Destructive Testing (NDT).

5.
Langmuir ; 35(24): 7751-7758, 2019 Jun 18.
Article in English | MEDLINE | ID: mdl-31117732

ABSTRACT

An atomistic slit pore model is built to study the sorption-induced deformation of nanoporous materials with the help of molecular simulation. Both sorption and strain isotherms are determined to probe the anisotropic deformation behavior induced upon molecular adsorption. A detailed analysis shows that the driving microscopic mechanisms at different sorption stages are different. At high relative pressure, as expected from the classical macroscopic picture, the pore deformation is governed by the Laplace pressure as the pore gets filled with liquid because of capillary condensation. In such situation, the strain in normal and longitudinal directions can be predicted from the stiffness modulus in the corresponding direction. At low pressure, when liquid films are adsorbed at the pore surfaces and separated by the vapor phase, the strain is driven by the attractive solid-fluid forces and in-plane pressure within the film, and the deformation is confined in the direction parallel to the film-solid interface. Because of the interplay of the two factors, the strain changes from shrinkage to expansion upon increase of pressure. Analysis of isosteric heat of adsorption shows that the contribution arising from the deformation is small compared to the sorption contribution, which indicates that the influence of deformation on the sorption process is limited.

6.
Nat Commun ; 9(1): 3507, 2018 08 29.
Article in English | MEDLINE | ID: mdl-30158573

ABSTRACT

Hysteresis is observed in sorption-induced swelling in various soft nanoporous polymers. The associated coupling mechanism responsible for the observed sorption-induced swelling and associated hysteresis needs to be unraveled. Here we report a microscopic scenario for the molecular mechanism responsible for hysteresis in sorption-induced swelling in natural polymers such as cellulose using atom-scale simulation; moisture content and swelling exhibit hysteresis upon ad- and desorption but not swelling versus moisture content. Different hydrogen bond networks are examined; cellulose swells to form water-cellulose bonds upon adsorption but these bonds do not break upon desorption at the same chemical potential. These findings, which are supported by mechanical testing and cellulose textural assessment upon sorption, shed light on experimental observations for wood and other related materials.

7.
Phys Rev E ; 96(6-1): 062901, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29347426

ABSTRACT

A granular system composed of frictional glass beads is simulated using the discrete element method. The intergrain forces are based on the Hertz contact law in the normal direction with frictional tangential force. The damping due to collision is also accounted for. Systems are loaded at various stresses and their quasistatic elastic moduli are characterized. Each system is subjected to an extensive dynamic testing protocol by measuring the resonant response to a broad range of ac drive amplitudes and frequencies via a set of diagnostic strains. The system, linear at small ac drive amplitudes, has resonance frequencies that shift downward (i.e., modulus softening) with increased ac drive amplitude. Detailed testing shows that the slipping contact ratio does not contribute significantly to this dynamic modulus softening, but the coordination number is strongly correlated to this reduction. This suggests that the softening arises from the extended structural change via break and remake of contacts during the rearrangement of bead positions driven by the ac amplitude.

8.
Phys Rev Lett ; 116(11): 115501, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-27035309

ABSTRACT

In this Letter, the tensorial nature of the nonequilibrium dynamics in nonlinear mesoscopic elastic materials is evidenced via multimode resonance experiments. In these experiments the dynamic response, including the spatial variations of velocities and strains, is carefully monitored while the sample is vibrated in a purely longitudinal or a purely torsional mode. By analogy with the fact that such experiments can decouple the elements of the linear elastic tensor, we demonstrate that the parameters quantifying the nonequilibrium dynamics of the material differ substantially for a compressional wave and for a shear wave. This result could lead to further understanding of the nonlinear mechanical phenomena that arise in natural systems as well as to the design and engineering of nonlinear acoustic metamaterials.

9.
Langmuir ; 32(5): 1299-308, 2016 Feb 09.
Article in English | MEDLINE | ID: mdl-26743317

ABSTRACT

Droplet impact has been imaged on different rigid, smooth, and rough substrates for three liquids with different viscosity and surface tension, with special attention to the lower impact velocity range. Of all studied parameters, only surface tension and viscosity, thus the liquid properties, clearly play a role in terms of the attained maximum spreading ratio of the impacting droplet. Surface roughness and type of surface (steel, aluminum, and parafilm) slightly affect the dynamic wettability and maximum spreading at low impact velocity. The dynamic contact angle at maximum spreading has been identified to properly characterize this dynamic spreading process, especially at low impact velocity where dynamic wetting plays an important role. The dynamic contact angle is found to be generally higher than the equilibrium contact angle, showing that statically wetting surfaces can become less wetting or even nonwetting under dynamic droplet impact. An improved energy balance model for maximum spreading ratio is proposed based on a correct analytical modeling of the time at maximum spreading, which determines the viscous dissipation. Experiments show that the time at maximum spreading decreases with impact velocity depending on the surface tension of the liquid, and a scaling with maximum spreading diameter and surface tension is proposed. A second improvement is based on the use of the dynamic contact angle at maximum spreading, instead of quasi-static contact angles, to describe the dynamic wetting process at low impact velocity. This improved model showed good agreement compared to experiments for the maximum spreading ratio versus impact velocity for different liquids, and a better prediction compared to other models in literature. In particular, scaling according to We(1/2) is found invalid for low velocities, since the curves bend over to higher maximum spreading ratios due to the dynamic wetting process.

10.
Article in English | MEDLINE | ID: mdl-26382424

ABSTRACT

Molecular simulation of adsorption of water molecules in nanoporous amorphous biopolymers, e.g., cellulose, reveals nonlinear swelling and nonlinear mechanical response with the increase in fluid content. These nonlinearities result from hydrogen bond breakage by water molecules. Classical poroelastic models, employing porosity and pore pressure as basic variables for describing the "pore fluid," are not adequate for the description of these systems. There is neither a static geometric structure to which porosity can sensibly be assigned nor arrangements of water molecules that are adequately described by giving them a pressure. We employ molar concentration of water and chemical potential to describe the state of the "pore fluid" and stress-strain as mechanical variables. A thermodynamic description is developed using a model energy function having mechanical, fluid, and fluid-mechanical coupling contributions. The parameters in this model energy are fixed by the output of the initial simulation and validated with the results of further simulation. The poroelastic properties, e.g., swelling and mechanical response, are found to be functions both of the molar concentration of water and the stress. The basic fluid-mechanical coupling coefficient, the swelling coefficient, depends on the molar concentration of water and stress and is interpreted in terms of porosity change and solid matrix deformation. The difference between drained and undrained bulk stiffness is explained as is the dependence of these moduli on concentration and stress.


Subject(s)
Biopolymers/chemistry , Molecular Dynamics Simulation , Water/chemistry , Adsorption , Cellulose/chemistry , Elasticity , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Nonlinear Dynamics , Porosity , Stress, Mechanical , Thermodynamics
11.
Langmuir ; 31(39): 10843-9, 2015 Oct 06.
Article in English | MEDLINE | ID: mdl-26390260

ABSTRACT

The diffusion of H2O in three amorphous polymer-H2O systems is studied as a function of H2O content using molecular dynamics. A picture of H2O molecule motion comprising alternating steps of being bound at an adsorption site ("stop") and moving ("go") emerges. This picture is made quantitative. The bound time, frequency of stop-go steps, and tortuosity all decrease with H2O content. Fourier analysis of particle motion during bound time segments provides a measure of an attempt frequency that is connected quantitatively to the bound time and an activation energy of a hydrogen bond. For increasing H2O content, the polymer-H2O systems swell, leading to an increase in the diffusion coefficient and porosity and a decrease in activation energy.

12.
Biomacromolecules ; 16(9): 2972-8, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26313656

ABSTRACT

A two-phase model of a wood microfibril consisting of crystalline cellulose and amorphous hemicellulose is investigated with molecular dynamics in full range of sorption to understand the molecular origin of swelling and weakening of wood. Water is adsorbed in hemicellulose, and an excess of sorption is found at the interface, while no sorption occurs within cellulose. Water molecules adsorbed on the interface push away polymer chains, forcing the two phases to separate and causing breaking of h-bonds, particularly pronounced on the interface. Existence of two different regions in moisture response is demonstrated. At low moisture content, water is uniformly adsorbed within hemicellulose, breaking a small amount of hydrogen bonds. Microfibril does not swell, and the porosity does not change. As moisture content increases, water is adsorbed preferentially at the interface, which leads to additional swelling and porosity increase at the interface. Young's and shear moduli decrease importantly due to breaking of h-bonds and screening of the long-range interactions.


Subject(s)
Polysaccharides/chemistry , Water/chemistry , Adsorption
13.
Article in English | MEDLINE | ID: mdl-25974507

ABSTRACT

This paper introduces a unifying theory for describing complex behavior for porous materials. The key ingredients are the stored energy in solid-fluid interaction as well as the solid-solid and fluid-fluid interactions. A finite element formulation is employed which naturally accounts for the pore-pore network effects and is easily applicable to most pore geometries such as cellular solids and foams. The interactions, built in at the finite element level, give rise to the mechanical response of the macroscopic material unit. Through numerical studies, we show that there is strong coupling between fluid and solid that induces complex mechanical response, i.e., hysteresis and anisotropy. It is demonstrated that hysteresis arises directly from the fluid-solid coupling. We term this type of hysteresis emergent hysteresis.

14.
Article in English | MEDLINE | ID: mdl-24827238

ABSTRACT

This paper reports results of a three-dimensional discrete element method modeling investigation of the role of boundary vibration in perturbing stick-slip dynamics in a sheared granular layer. The focus is on the influence of vibration within a range of amplitudes and on the fact that above a threshold early slip will be induced. We study the effects of triggering beyond the vibration interval and their origins. A series of perturbed simulations are performed for 30 large slip events selected from different reference runs, in the absence of vibration. For each of the perturbed simulations, vibration is applied either about the middle of the stick phase or slightly before the onset of a large expected slip event. For both cases, a suppression of energy release is on average observed in the perturbed simulations, within the short term following the vibration application. For cases where vibration is applied in the middle of the stick phase, a significant clock advance of the large slip event occurs. In the long term after vibration, there is a recovery period with higher-energy release and increased activity in the perturbed simulations, which compensates for the temporary suppression observed within the short term.

15.
ACS Macro Lett ; 3(10): 1037-1040, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-35610788

ABSTRACT

We investigate the influence of adsorbed water on amorphous cellulose structure and properties, within the full range of moisture content from the dry state to saturation, by molecular dynamics simulation. Increasing water content results in overall swelling, a substantial decrease in stiffness, and higher diffusivity of the water molecules. The obtained sorption curve as well as the range of swelling and weakening are confirmed by experiments. The measured properties undergo a noticeable change at about 10% of moisture content, which suggests that a transition occurs in the porous system, indicating that the sorption process is stepwise. Our analysis of water network formation reveals that the onset of percolation coincides with the moisture content at which a transition in the material properties is observed. An in-depth analysis of the molecular mechanism of hydrogen bonding, van der Waals interactions, and water network in the two regimes enhances the understanding of the adsorption process.

16.
Phys Rev Lett ; 98(10): 104301, 2007 Mar 09.
Article in English | MEDLINE | ID: mdl-17358539

ABSTRACT

This Letter reports on work performed to locate and interrogate a nonlinear scatterer in a linearly elastic medium through the use of a time reversal mirror in combination with nonlinear dynamics. Time reversal provides the means to spatially and temporally localize elastic energy on a scattering feature while the nonlinear dynamics spectrum allows one to determine whether the scatterer is nonlinear (e.g., mechanical damage). Here elastic waves are measured in a solid and processed to extract the nonlinear elastic response. The processed elastic signals are then time reversed, rebroadcast, and found to focus on the nonlinear scatterer, thus defining a time-reversed nonlinear elastic wave spectroscopy process. Additionally, the focusing process illuminates the complexity of the nonlinear scatterer in both space and time, providing a means to image and investigate the origins and physical mechanisms of the nonlinear elastic response.

18.
Proc Natl Acad Sci U S A ; 103(40): 14738-43, 2006 Oct 03.
Article in English | MEDLINE | ID: mdl-17003127

ABSTRACT

The Fe(II)- and alpha-ketoglutarate (alphaKG)-dependent dioxygenases use mononuclear nonheme iron centers to effect hydroxylation of their substrates and decarboxylation of their cosubstrate, alphaKG, to CO(2) and succinate. Our recent dissection of the mechanism of taurine:alphaKG dioxygenase (TauD), a member of this enzyme family, revealed that two transient complexes accumulate during catalysis in the presence of saturating substrates. The first complex contains the long-postulated C-H-cleaving Fe(IV)-oxo intermediate, J, and the second is an enzyme.product(s) complex. Here, we demonstrate the accumulation of two transient complexes in the reaction of a prolyl-4-hydroxylase (P4H), a functional homologue of human alphaKG-dependent dioxygenases with essential roles in collagen biosynthesis and oxygen sensing. The kinetic and spectroscopic properties of these two P4H complexes suggest that they are homologues of the TauD intermediates. Most notably, the first exhibits optical absorption and Mössbauer spectra similar to those of J and, like J, a large substrate deuterium kinetic isotope on its decay. The close correspondence of the accumulating states in the P4H and TauD reactions supports the hypothesis of a conserved mechanism for substrate hydroxylation by enzymes in this family.


Subject(s)
Carbon/analysis , Hydrogen/analysis , Iron/analysis , Phycodnaviridae/enzymology , Procollagen-Proline Dioxygenase/analysis , Procollagen-Proline Dioxygenase/chemistry , Absorption , Amino Acid Sequence , Humans , Ketoglutaric Acids/metabolism , Kinetics , Mixed Function Oxygenases/metabolism , Molecular Sequence Data , Peptides/chemistry , Spectroscopy, Mossbauer , Substrate Specificity , Titrimetry
19.
J Acoust Soc Am ; 118(6): 3946-52, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16419838

ABSTRACT

Nonlinear resonant ultrasound spectroscopy (NRUS) is a resonance-based technique exploiting the significant nonlinear behavior of damaged materials. In NRUS, the resonant frequency(ies) of an object is studied as a function of the excitation level. As the excitation level increases, the elastic nonlinearity is manifest by a shift in the resonance frequency. This study shows the feasibility of this technique for application to damage assessment in bone. Two samples of bovine cortical bone were subjected to progressive damage induced by application of mechanical cycling. Before cycling commenced, and at each step in the cycling process, NRUS was applied for damage assessment. For independent assessment of damage, high-energy x-ray computed tomography imaging was performed but was only useful in identifying the prominent cracks. As the integral quantity of damage increased, NRUS revealed a corresponding increase in the nonlinear response. The measured change in nonlinear response is much more sensitive than the change in linear modulus. The results suggest that NRUS could be a potential tool for micro-damage assessment in bone. Further work must be carried out for a better understanding of the physical nature of damaged bone and for the ultimate goal of the challenging in vivo implementation of the technique.


Subject(s)
Femoral Fractures/diagnostic imaging , Femur/diagnostic imaging , Ultrasonography/methods , Animals , Anisotropy , Bone Density , Cattle , Femur/injuries , In Vitro Techniques , Models, Biological , Nonlinear Dynamics , Stress, Mechanical
20.
J Am Chem Soc ; 126(26): 8108-9, 2004 Jul 07.
Article in English | MEDLINE | ID: mdl-15225039

ABSTRACT

The Fe(II)- and alpha-ketoglutarate-dependent dioxygenases catalyze hydroxylation reactions of considerable biomedical and environmental significance. Recently, the first oxidized iron intermediate in the reaction of a member of this family, taurine:alpha-ketoglutarate dioxygenase (TauD), was detected and shown to be a high-spin Fe(IV) complex. In this study we have used X-ray absorption spectroscopy to demonstrate the presence of a short (1.62 A) interaction between the iron and one of its ligands in the Fe(IV) intermediate but not in the Fe(II) starting complex. The detection of this interaction strongly corroborates the hypothesis that the intermediate contains an Fe=O structural motif.


Subject(s)
Iron/chemistry , Mixed Function Oxygenases/chemistry , Nonheme Iron Proteins/chemistry , Oxygen/chemistry , Escherichia coli/enzymology , Spectrum Analysis , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...