Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Rev ; 122(16): 13547-13635, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35904408

ABSTRACT

Agricultural development, extensive industrialization, and rapid growth of the global population have inadvertently been accompanied by environmental pollution. Water pollution is exacerbated by the decreasing ability of traditional treatment methods to comply with tightening environmental standards. This review provides a comprehensive description of the principles and applications of electrochemical methods for water purification, ion separations, and energy conversion. Electrochemical methods have attractive features such as compact size, chemical selectivity, broad applicability, and reduced generation of secondary waste. Perhaps the greatest advantage of electrochemical methods, however, is that they remove contaminants directly from the water, while other technologies extract the water from the contaminants, which enables efficient removal of trace pollutants. The review begins with an overview of conventional electrochemical methods, which drive chemical or physical transformations via Faradaic reactions at electrodes, and proceeds to a detailed examination of the two primary mechanisms by which contaminants are separated in nondestructive electrochemical processes, namely electrokinetics and electrosorption. In these sections, special attention is given to emerging methods, such as shock electrodialysis and Faradaic electrosorption. Given the importance of generating clean, renewable energy, which may sometimes be combined with water purification, the review also discusses inverse methods of electrochemical energy conversion based on reverse electrosorption, electrowetting, and electrokinetic phenomena. The review concludes with a discussion of technology comparisons, remaining challenges, and potential innovations for the field such as process intensification and technoeconomic optimization.


Subject(s)
Water Pollutants, Chemical , Water Purification , Electrodes , Environmental Pollution , Wastewater , Water , Water Purification/methods
2.
Water Res ; 210: 117959, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34942526

ABSTRACT

Capacitive deionization (CDI) is an emerging membraneless water desalination technology based on storing ions in charged electrodes by electrosorption. Due to unique selectivity mechanisms, CDI has been investigated towards ion-selective separations such as water softening, nutrient recovery, and production of irrigation water. Especially promising is the use of activated microporous carbon electrodes due to their low cost and wide availability at commercial scales. We show here, both theoretically and experimentally, that sulfonated activated carbon electrodes enable the first demonstration of perfect divalent cation selectivity in CDI, where we define "perfect" as significant removal of the divalent cation with zero removal of the competing monovalent cation. For example, for a feedwater of 15 mM NaCl and 3 mM CaCl2, and charging from 0.4 V to 1.2 V, we show our cell can remove 127 µmol per gram carbon of divalent Ca2+, while slightly expelling competing monovalent Na+ (-13.2 µmol/g). This separation can be achieved with excellent efficiency, as we show both theoretically and experimentally a calcium charge efficiency above unity, and an experimental energy consumption of less than 0.1 kWh/m3. We further demonstrate a low-infrastructure technique to measure cation selectivity, using ion-selective electrodes and the extended Onsager-Fuoss model.


Subject(s)
Water Purification , Cations, Divalent , Charcoal , Electrodes , Water Softening
3.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Article in English | MEDLINE | ID: mdl-34593644

ABSTRACT

Several harmful or valuable ionic species present in seawater, brackish water, and wastewater are amphoteric, weak acids or weak bases, and, thus, their properties depend on local water pH. Effective removal of these species can be challenging for conventional membrane technologies, necessitating chemical dosing of the feedwater to adjust pH. A prominent example is boron, which is considered toxic in high concentrations and often requires additional membrane passes to remove during seawater desalination. Capacitive deionization (CDI) is an emerging membraneless technique for water treatment and desalination, based on electrosorption of salt ions into charging microporous electrodes. CDI cells show strong internally generated pH variations during operation, and, thus, CDI can potentially remove pH-dependent species without chemical dosing. However, development of this technique is inhibited by the complexities inherent to the coupling of pH dynamics and ion properties in a charging CDI cell. Here, we present a theoretical framework predicting the electrosorption of pH-dependent species in flow-through electrode CDI cells. We demonstrate that such a model enables insight into factors affecting species electrosorption and conclude that important design rules for such systems are highly counterintuitive. For example, we show both theoretically and experimentally that for boron removal, the anode should be placed upstream and the cathode downstream, an electrode order that runs counter to the accepted wisdom in the CDI field. Overall, we show that to achieve target separations relying on coupled, complex phenomena, such as in the removal of amphoteric species, a theoretical CDI model is essential.

4.
Environ Sci Technol ; 53(14): 8447-8454, 2019 Jul 16.
Article in English | MEDLINE | ID: mdl-31187620

ABSTRACT

Capacitive deionization (CDI) is an emerging water treatment technology often applied to brackish water desalination and water softening. Typical CDI cells consist of two microporous carbon electrodes sandwiching a dielectric separator, and desalt feedwater flowing through the cell by storing ions in electric double layers (EDLs) within charged micropores. CDI cells have demonstrated size-based ion selectivity wherein smaller hydrated ions are preferentially electrosorbed over larger hydrated ions. We demonstrate that such size-based selectivity can be substantially enhanced through the addition of chemical charge to micropores via surface functionalization. We develop a micropore EDL theory that includes both finite ion size effects and micropore chemical charge, which predicts such enhancements and elucidates that they result from denser counterion packing in micropores. With our experimental CDI cell, we desalted an electrolyte consisting of equimolar potassium (K+) and lithium (Li+) ions. We show that use of a surface-functionalized (oxidized) cathode significantly increased the electrosorption ratio of smaller K+ to larger Li+ compared to a cell with a pristine cathode, for example, from ∼1 to 1.84 for a charging voltage of 0.4 V. Our model predicts yet-higher electrosorption ratios are attainable, but our experimental cell suffered from significant cathode chemical charge degradation at applied voltages of ∼1 V.


Subject(s)
Sodium Chloride , Water Purification , Adsorption , Electrodes , Ions
SELECTION OF CITATIONS
SEARCH DETAIL
...