Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Blood Adv ; 5(10): 2447-2455, 2021 05 25.
Article in English | MEDLINE | ID: mdl-33988700

ABSTRACT

Inadequate diagnostics compromise cancer care across lower- and middle-income countries (LMICs). We hypothesized that an inexpensive gene expression assay using paraffin-embedded biopsy specimens from LMICs could distinguish lymphoma subtypes without pathologist input. We reviewed all biopsy specimens obtained at the Instituto de Cancerología y Hospital Dr. Bernardo Del Valle in Guatemala City between 2006 and 2018 for suspicion of lymphoma. Diagnoses were established based on the World Health Organization classification and then binned into 9 categories: nonmalignant, aggressive B-cell, diffuse large B-cell, follicular, Hodgkin, mantle cell, marginal zone, natural killer/T-cell, or mature T-cell lymphoma. We established a chemical ligation probe-based assay (CLPA) that quantifies expression of 37 genes by capillary electrophoresis with reagent/consumable cost of approximately $10/sample. To assign bins based on gene expression, 13 models were evaluated as candidate base learners, and class probabilities from each model were then used as predictors in an extreme gradient boosting super learner. Cases with call probabilities < 60% were classified as indeterminate. Four (2%) of 194 biopsy specimens in storage <3 years experienced assay failure. Diagnostic samples were divided into 70% (n = 397) training and 30% (n = 163) validation cohorts. Overall accuracy for the validation cohort was 86% (95% confidence interval [CI]: 80%-91%). After excluding 28 (17%) indeterminate calls, accuracy increased to 94% (95% CI: 89%-97%). Concordance was 97% for a set of high-probability calls (n = 37) assayed by CLPA in both the United States and Guatemala. Accuracy for a cohort of relapsed/refractory biopsy specimens (n = 39) was 79% and 88%, respectively, after excluding indeterminate cases. Machine-learning analysis of gene expression accurately classifies paraffin-embedded lymphoma biopsy specimens and could transform diagnosis in LMICs.


Subject(s)
Developing Countries , Lymphoma, T-Cell, Peripheral , Biopsy , Humans
2.
Int J Radiat Biol ; 96(1): 57-66, 2020 01.
Article in English | MEDLINE | ID: mdl-30507310

ABSTRACT

PURPOSE: We introduce and evaluate a high throughput biodosimetry test system (REDI-Dx) suitable for testing of thousands of potential radiation victims following a mass scale nuclear event caused by detonation of a nuclear device or a nuclear accident, as part of an overall strategy for effective medical management of the crisis. MATERIALS AND METHODS: The performance of a high throughput biodosimetry test was evaluated by collecting samples of both non-irradiated presumed healthy donors as well as irradiated subjects collected as part of either cancer treatment regimens or banked from previous studies. The test measures the gene expression of a set of radiation responsive genes based on the DxDirect® genomic platform. The potential diagnostic accuracy of REDI-Dx was evaluated as a predictor of actual dose of radiation. While the REDI-Dx test has been calibrated to provide a quantitative measure of actual absorbed dose, we compared the performance of the REDI-Dx test (sensitivity and specificity) as a qualitative result at the most commonly applied thresholds 2.0 Gy and 6.0 Gy. RESULTS: The test demonstrated high specificity and lack of effect of medical conditions. Using receiver operating characteristic (ROC) curve analysis, REDI-Dx was shown to be a good predictor of actual dose for determining treatment category based on either 2.0 or 6.0 Gy, with a 98.5% sensitivity and 90% specificity for 2.0 Gy, and 92% sensitivity and 84% specificity for 6.0 Gy. Results were reproducible between clinical laboratories with an SD of 0.2 Gy for samples ≤2.0 Gy and a CV of 10.3% for samples from 2.0 to 10.0 Gy. CONCLUSIONS: Use of a biodosimetry test, like REDI-Dx test system would provide valuable information that would improve the ability to assign patients to the correct treatment category when combined with currently available biodosimetry tools, as compared to the use of existing tools alone. The REDI-Dx biodosimetry test system is for investigational use only in the U.S.A. The performance characteristics of this product have not been established.


Subject(s)
Patient Selection , Radiation Injuries/therapy , Radioactive Hazard Release , Dose-Response Relationship, Radiation , Humans , Lymphocytes/radiation effects , Radiation Injuries/complications , Radiation Injuries/etiology , Radiometry , Vomiting/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...