Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 195(10): 1211, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37707663

ABSTRACT

The hypothesis that local hypoxia and chlorophyll concentration are spatially tethered to local, sediment-driven nutrient release was examined in a small, nutrient-impacted estuary in the Southern Gulf of St. Lawrence, Canada. Sediment reactor core samples were taken at 10 locations between 0.25 and 100% of the estuary area in spring and fall (2019) and used to estimate nitrogen and phosphate flux. Sediment organic matter, carbonate, percent nitrogen, percent carbon, δ13C, and δ15N were measured from the reactor core stations. Oxygen was recorded continually using oxygen loggers while chlorophyll and salinity were measured bi-weekly. A hydrodynamic model was used to determine water renewal time at each station. The most severe eutrophication effects were in the upper one-fifth of the estuary. There were strong local relationships between sediment biogeochemistry, hypoxia, and chlorophyll metrics but not with water renewal time. Internal nutrient loading represented 65% and 69% of total N loading, and 98% and 89% of total P loading to the estuary in June and September, respectively. Sediment nitrogen flux was highly predictable from a range of local sediment variables that reflect either nutrient content, or organic carbon enrichment in general. Percent nitrogen and percent carbon were highly correlated but sediment P flux was poorly predicted from sediment parameters examined. The highest correlations were with percent nitrogen and percent carbon. These results indicate that incorporating internal nutrient loading into nutrient monitoring programs is a critical next step to improve predictive capacity for eutrophication endpoints and to mitigate nutrient effects.


Subject(s)
Environmental Monitoring , Estuaries , Humans , Hypoxia , Oxygen , Carbon , Chlorophyll , Nitrogen , Nutrients , Water
2.
Sci Total Environ ; 861: 160598, 2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36455725

ABSTRACT

Marine benthic environments serve as the ultimate sink for sediment organic matter (SOM), but shellfish farming can potentially disturb the natural sink of seston, altering ecosystem functioning. Understanding the potential disturbance of a shellfish farm and its ecological effects is therefore important for a responsible management of shellfish-mediated marine ecosystem. In this study, the variations in benthic organic carbon flux of a bottom-based Manila clam (Ruditapes philippinarum) farm in Laizhou Bay, China were estimated by using a carbon flux model coupled with hydrodynamic and individual growth models. SOM and macrofaunal community were monitored for 3 years to investigate their changes to the carbon fluxes. Model simulations illustrated that the carbon flux in an area of 247 km2 was altered due to seston depletion and biodeposition, which caused decrease and increase in SOM in different areas, respectively. Cluster analysis based on taxonomic composition of macrofaunal community divided the sites into four groups, which corresponded with predicted changes of carbon flux. Increased carbon flux caused higher disturbance level (indicated by AMBI) to the macrofaunal community but increased species richness, abundance, and Shannon-Wiener index, suggesting the community was both disturbed and benefited from clam farming. This study confirmed that the benthic organic carbon flux is a key factor causing differences in SOM and macrofaunal community outside the farm, and thus can be used as an efficient method for estimating the benthic impacts of shellfish farming both in and outside the farming area.


Subject(s)
Bivalvia , Ecosystem , Animals , Geologic Sediments/analysis , Shellfish/analysis , Agriculture
3.
J Environ Manage ; 282: 111921, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33465721

ABSTRACT

Finfish aquaculture is a source of dissolved nutrients, which can impact water quality in the wider environment. Therefore, the potential effects of dissolved nutrient loading must be considered if management is to transition towards an Ecosystem Approach to Aquaculture. In this study, the dissolved nitrogen dispersion pattern from a rainbow trout farm in Port Mouton (Nova Scotia, Canada) was simulated and evaluated in the context of potential toxicity for a foundation seagrass species. A range of scenarios defined under a precautionary approach were simulated using a fully spatial hydrodynamic model. These worst-case scenarios predicted a maximum nitrogen concentration at any moment of the day of 7.5 µM, which is below the expected toxicity threshold for seagrass. Further scenarios demonstrated that the increased dispersion caused by the wind could drop these values by 45-50% in the vicinity of the farm, suggesting the relevant role of wind forcing in nitrogen dispersion. This outcome suggests that the decline of seagrass reported in some parts of Port Mouton bay are unlikely to have been triggered by dissolved nutrients discharged from the farm. This case-study demonstrates the value of ecosystem modelling to make science-based and transparent decisions to implement an ecosystem approach to aquaculture.


Subject(s)
Ecosystem , Nitrogen , Animals , Aquaculture , Canada , Models, Theoretical , Nitrogen/analysis
4.
Mar Pollut Bull ; 157: 111282, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32658665

ABSTRACT

Assessing the carrying capacity of ecosystems is crucial to the selection of suitable and sustainable locations for aquaculture farms. In Malpeque Bay (PEI, Canada), the potential expansion of mussel farms has driven a series of numerical modelling studies. We coupled sub-models for sea lettuce, wild and cultured oysters and wild softshell clams to an existing ecosystem model to better understand nutrient dynamics and the carrying capacity of Malpeque Bay. Simulations suggested that competition for nutrients between phytoplankton and sea lettuce and filtration by cultured bivalves predominantly mitigate eutrophication effects. The addition of sea lettuce reduced mussel growth by 2% on average and up to 9% near eutrophic estuaries favouring macroalgae growth. Projected new mussel farms reduced current mussel growth by 2% also, suggesting that the carrying capacity of the bay may not be reached yet. Both current and projected aquaculture activities seemed to have limited effects on natural bivalve growth.


Subject(s)
Bivalvia , Ecosystem , Animals , Aquaculture , Canada , Eutrophication
5.
Glob Chang Biol ; 22(12): 3901-3913, 2016 12.
Article in English | MEDLINE | ID: mdl-27324415

ABSTRACT

Coastal embayments are at risk of impacts by climate change drivers such as ocean warming, sea level rise and alteration in precipitation regimes. The response of the ecosystem to these drivers is highly dependent on their magnitude of change, but also on physical characteristics such as bay morphology and river discharge, which play key roles in water residence time and hence estuarine functioning. These considerations are especially relevant for bivalve aquaculture sites, where the cultured biomass can alter ecosystem dynamics. The combination of climate change, physical and aquaculture drivers can result in synergistic/antagonistic and nonlinear processes. A spatially explicit model was constructed to explore effects of the physical environment (bay geomorphic type, freshwater inputs), climate change drivers (sea level, temperature, precipitation) and aquaculture (bivalve species, stock) on ecosystem functioning. A factorial design led to 336 scenarios (48 hydrodynamic × 7 management). Model outcomes suggest that the physical environment controls estuarine functioning given its influence on primary productivity (bottom-up control dominated by riverine nutrients) and horizontal advection with the open ocean (dominated by bay geomorphic type). The intensity of bivalve aquaculture ultimately determines the bivalve-phytoplankton trophic interaction, which can range from a bottom-up control triggered by ammonia excretion to a top-down control via feeding. Results also suggest that temperature is the strongest climate change driver due to its influence on the metabolism of poikilothermic organisms (e.g. zooplankton and bivalves), which ultimately causes a concomitant increase of top-down pressure on phytoplankton. Given the different thermal tolerance of cultured species, temperature is also critical to sort winners from losers, benefiting Crassostrea virginica over Mytilus edulis under the specific conditions tested in this numerical exercise. In general, it is predicted that bays with large rivers and high exchange with the open ocean will be more resilient under climate change when bivalve aquaculture is present.


Subject(s)
Aquaculture , Bivalvia , Climate Change , Ecosystem , Animals , Bays , Estuaries
6.
Mar Pollut Bull ; 100(1): 200-216, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26371845

ABSTRACT

A moratorium on further bivalve leasing was established in 1999-2000 in Prince Edward Island (Canada). Recently, a marine spatial planning process was initiated explore potential mussel culture expansion in Malpeque Bay. This study focuses on the effects of a projected expansion scenario on productivity of existing leases and available suspended food resources. The aim is to provide a robust scientific assessment using available datasets and three modelling approaches ranging in complexity: (1) a connectivity analysis among culture areas; (2) a scenario analysis of organic seston dynamics based on a simplified biogeochemical model; and (3) a scenario analysis of phytoplankton dynamics based on an ecosystem model. These complementary approaches suggest (1) new leases can affect existing culture both through direct connectivity and through bay-scale effects driven by the overall increase in mussel biomass, and (2) a net reduction of phytoplankton within the bounds of its natural variation in the area.


Subject(s)
Aquaculture , Bivalvia , Models, Theoretical , Animals , Bays , Biomass , Ecosystem , Environment , Phytoplankton , Prince Edward Island , Shellfish
SELECTION OF CITATIONS
SEARCH DETAIL
...