Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
2.
Sci Data ; 7(1): 59, 2020 02 20.
Article in English | MEDLINE | ID: mdl-32080203

ABSTRACT

Karst aquifers provide drinking water for 10% of the world's population, support agriculture, groundwater-dependent activities, and ecosystems. These aquifers are characterised by complex groundwater-flow systems, hence, they are extremely vulnerable and protecting them requires an in-depth understanding of the systems. Poor data accessibility has limited advances in karst research and realistic representation of karst processes in large-scale hydrological studies. In this study, we present World Karst Spring hydrograph (WoKaS) database, a community-wide effort to improve data accessibility. WoKaS is the first global karst springs discharge database with over 400 spring observations collected from articles, hydrological databases and researchers. The dataset's coverage compares to the global distribution of carbonate rocks with some bias towards the latitudes of more developed countries. WoKaS database will ensure easy access to a large-sample of good quality datasets suitable for a wide range of applications: comparative studies, trend analysis and model evaluation. This database will largely contribute to research advancement in karst hydrology, supports karst groundwater management, and promotes international and interdisciplinary collaborations.

3.
Environ Sci Pollut Res Int ; 23(12): 11405-29, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26490914

ABSTRACT

The aim of the present study is to estimate the export fluxes of major dissolved species at the scale of the Amazon basin, to identify the main parameters controlling their spatial distribution and to identify the role of discharge variability in the variability of the total dissolved solid (TDS) flux through the hydrological cycle. Data are compiled from the monthly hydrochemistry and daily discharge database of the "Programa Climatologico y Hidrologico de la Cuenca Amazonica de Bolivia" (PHICAB) and the HYBAM observatories from 34 stations distributed over the Amazon basin (for the 1983-1992 and 2000-2012 periods, respectively). This paper consists of a first global observation of the fluxes and temporal dynamics of each geomorphological domain of the Amazon basin. Based on mean interannual monthly flux calculations, we estimated that the Amazon basin delivered approximately 272 × 10(6) t year(-1) (263-278) of TDS during the 2003-2012 period, which represents approximately 7 % of the continental inputs to the oceans. This flux is mainly made up by HCO3, Ca and SiO2, reflecting the preferential contributions of carbonate and silicate chemical weathering to the Amazon River Basin. The main tributaries contributing to the TDS flux are the Marañon and Ucayali Rivers (approximately 50 % of the TDS production over 14 % of the Amazon basin area) due to the weathering of carbonates and evaporites drained by their Andean tributaries. An Andes-sedimentary area-shield TDS flux (and specific flux) gradient is observed throughout the basin and is first explained by the TDS concentration contrast between these domains, rather than variability in runoff. This observation highlights that, under tropical context, the weathering flux repartition is primarily controlled by the geomorphological/geological setting and confirms that sedimentary areas are currently active in terms of the production of dissolved load. The log relationships of concentration vs discharge have been characterized over all the studied stations and for all elements. The analysis of the slope of the relationship within the selected contexts reveals that the variability in TDS flux is mainly controlled by the discharge variability throughout the hydrological year. At the outlet of the basin, a clockwise hysteresis is observed for TDS concentration and is mainly controlled by Ca and HCO3 hysteresis, highlighting the need for a sampling strategy with a monthly frequency to accurately determine the TDS fluxes of the basin. The evaporite dissolution flux tends to be constant, whereas dissolved load fluxes released from other sources (silicate weathering, carbonate weathering, biological and/or atmospheric inputs) are mainly driven by variability in discharge. These results suggest that past and further climate variability had or will have a direct impact on the variability of dissolved fluxes in the Amazon. Further studies need to be performed to better understand the processes controlling the dynamics of weathering fluxes and their applicability to present-day concentration-discharge relationships at longer timescales.


Subject(s)
Rivers/chemistry , Water Quality , Hydrology , South America
4.
Acta amaz ; 45(2): 175-186, abr.-jun. 2015. map, tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1455248

ABSTRACT

The Amazon River basin is important in the contribution of dissolved material to oceans (4% worldwide). The aim of this work was to study the spatial and the temporal variability of dissolved inorganic materials in the main rivers of the Amazon basin. Data from 2003 to 2011 from six gauging stations of the ORE-HYBAM localized in Solimões, Purus, Madeira and Amazon rivers were used for this study. The concentrations of Ca2+, Na+, K+, Mg2+, Cl-, SO4 -2, HCO3 - and SiO2 were analyzed. At the stations of Solimões and Amazon rivers, the concentrations of Ca2+, Mg2+, HCO3 - and SO4 -2 had heterogeneous distribution over the years and did not show seasonality. At the stations of Madeira river, the concentration of these ions had seasonality inversely proportional to water discharge (dilution-concentration effect). Similar behavior was observed for the concentrations of Cl- and Na+ at the stations of the Solimões, Amazon and Madeira rivers, indicating almost constant release of Cl- and Na+ fluxes during the hydrological cycle. K+ and SiO2 showed almost constant concentrations throughout the years and all the stations, indicating that their flows depend on the river discharge variation. Therefore, the temporal variability of the dissolved inorganic material fluxes in the Solimões and Amazon rivers depends on the hydro-climatic factor and on the heterogeneity of the sources. In the Madeira and Purus rivers there is less influence of these factors, indicating that dissolved load fluxes are mainly associated to silicates weathering. As the Solimões basin contributes approximately 84% of the total flux of dissolved materials in the basin and is mainly under the influence of a hydro-climatic factor, we conclude that the temporal variability of this factor controls the temporal variability of the dissolved material fluxes of the Amazon basin.


A bacia do rio Amazonas é importante no aporte de material dissolvido para o oceano (4% a nível mundial). O objetivo deste trabalho foi estudar a variabilidade espaço-temporal do material inorgânico dissolvido nos principais rios da bacia Amazônica, para o qual foram utilizados dados entre 2003 e 2011 de seis estações hidrológicas do ORE-HYBAM localizadas nos rios Solimões, Purus, Madeira e Amazonas, analisados Ca2+, Na+, K+, Mg2+, Cl-, SO4 -2, HCO3 - e SiO2. Nas estações do rio Solimões e Amazonas as concentrações de Ca2+, Mg2+, HCO3 - e SO4 -2 tiveram distribuição heterogênea ao longo dos anos e não apresentaram sazonalidade. Nas estações do rio Madeira a concentração desses íons mostraram sazonalidade inversamente proporcional à vazão (efeito diluição-concentração). Comportamento similar tiveram Cl- e Na+ nas estações dos rios Solimões, Amazonas e Madeira, indicando liberação quase constante desses fluxos ao longo do ciclo hidrológico. K+ e SiO2 apresentaram concentrações quase constantes ao longo dos anos e entre as estações, indicando que seus fluxos dependem da variação da vazão. Portanto, a variação temporal do fluxo de material inorgânico dissolvido no rio Solimões e Amazonas depende do fator hidroclimatológico e da heterogeneidade das fontes. Nos rios Madeira e Purus há menor influência desses fatores, o que evidencia maior aporte dos silicatos. Como a bacia do Solimões aporta aproximadamente 84% do fluxo total de material dissolvido na bacia e está sob influência, principalmente, do fator hidroclimático, pode-se concluir que a variabilidade temporal desse fator controla a temporalidade dos fluxos do material dissolvido na bacia Amazônica.


Subject(s)
Spatio-Temporal Analysis , Inorganic Particles/analysis , Rivers/chemistry , Silicates
5.
Proc Natl Acad Sci U S A ; 109(42): 16957-62, 2012 Oct 16.
Article in English | MEDLINE | ID: mdl-23027960

ABSTRACT

We present a unique proxy for the reconstruction of variation in precipitation over the Amazon: oxygen isotope ratios in annual rings in tropical cedar (Cedrela odorata). A century-long record from northern Bolivia shows that tree rings preserve the signal of oxygen isotopes in precipitation during the wet season, with weaker influences of temperature and vapor pressure. Tree ring δ(18)O correlates strongly with δ(18)O in precipitation from distant stations in the center and west of the basin, and with Andean ice core δ(18)O showing that the signal is coherent over large areas. The signal correlates most strongly with basin-wide precipitation and Amazon river discharge. We attribute the strength of this (negative) correlation mainly to the cumulative rainout processes of oxygen isotopes (Rayleigh distillation) in air parcels during westward transport across the basin. We further find a clear signature of the El Niño-Southern Oscillation (ENSO) in the record, with strong ENSO influences over recent decades, but weaker influence from 1925 to 1975 indicating decadal scale variation in the controls on the hydrological cycle. The record exhibits a significant increase in δ(18)O over the 20th century consistent with increases in Andean δ(18)O ice core and lake records, which we tentatively attribute to increased water vapor transport into the basin. Taking these data together, our record reveals a fresh path to diagnose and improve our understanding of variation and trends of the hydrological cycle of the world's largest river catchment.


Subject(s)
Cedrela/chemistry , Climate , El Nino-Southern Oscillation , Oxygen Isotopes/analysis , Plant Stems/chemistry , Rain/chemistry , Bolivia , Time Factors
6.
Nature ; 425(6957): 493-7, 2003 Oct 02.
Article in English | MEDLINE | ID: mdl-14523442

ABSTRACT

Continental-scale rivers with a sandy bed sequester a significant proportion of their sediment load in flood plains. The spatial extent and depths of such deposits have been described, and flood-plain accumulation has been determined at decadal timescales, but it has not been possible to identify discrete events or to resolve deposition on near-annual timescales. Here we analyse (210)Pb activity profiles from sediment cores taken in the pristine Beni and Mamore river basins, which together comprise 720,000 km2 of the Amazon basin, to investigate sediment accumulation patterns in the Andean-Amazonian foreland. We find that in most locations, sediment stratigraphy is dominated by discrete packages of sediments of uniform age, which are typically 20-80 cm thick, with system-wide recurrence intervals of about 8 yr, indicating relatively rare episodic deposition events. Ocean temperature and stream flow records link these episodic events to rapidly rising floods associated with La Niña events, which debouch extraordinary volumes of sediments from the Andes. We conclude that transient processes driven by the El Niño/Southern Oscillation cycle control the formation of the Bolivian flood plains and modulate downstream delivery of sediments as well as associated carbon, nutrients and pollutants to the Amazon main stem.

SELECTION OF CITATIONS
SEARCH DETAIL
...