Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 100(23): 235002, 2008 Jun 13.
Article in English | MEDLINE | ID: mdl-18643512

ABSTRACT

We measure the expansion of an ultracold plasma across the field lines of a uniform magnetic field. We image the ion distribution by extracting the ions with a high-voltage pulse onto a position-sensitive detector. Early in the lifetime of the plasma (<20 micros), the size of the image is dominated by the time-of-flight Coulomb explosion of the dense ion cloud. For later times, we measure the 2D Gaussian width of the ion image, obtaining the transverse expansion velocity as a function of the magnetic field (up to 70 G). We observe that the expansion velocity scales as B(-1/2), explained by a nonlinear ambipolar diffusion model with anisotropic diffusion in two different directions.

2.
Phys Rev Lett ; 89(26): 265004, 2002 Dec 23.
Article in English | MEDLINE | ID: mdl-12484830

ABSTRACT

From our recent theory based on the generation of shear flow and field in finite beta plasmas, the criterion for bifurcation from low to high confinement mode yields a critical parameter proportional to T(e)/square root (L(n)), where T(e) is the electron temperature and L(n) is the density scale length. The predicted threshold shows very good agreement with edge measurements on discharges undergoing low-to-high transitions in DIII-D. The observed differences in the transitions with the reversal of the toroidal magnetic field are reconciled in terms of this critical parameter. The theory also provides an explanation for pellet injection H modes in DIII-D, thereby unifying unconnected methods for accomplishing the transition.

3.
Phys Rev Lett ; 87(1): 015001, 2001 Jul 02.
Article in English | MEDLINE | ID: mdl-11461469

ABSTRACT

The understanding of low to high (L-H) transition in tokamaks has been an important area of investigation for more than a decade. Recent 3D finite beta simulations of drift-resistive ballooning modes in a flux tube geometry by Rogers et al. [Phys. Rev. Lett. 81, 4396 (1998)] have provided a unique parametrization of the transition in a two-dimensional phase space. Comparison of the threshold curve in this phase space with data from ASDEX and C-MOD has shown very good agreement. In this Letter we provide a simple theory, based on the generation of zonal flow and zonal magnetic field in a finite-beta plasma, which explains this threshold curve for L-H transition in tokamaks.

SELECTION OF CITATIONS
SEARCH DETAIL
...