Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 269(Pt 2): 132219, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729475

ABSTRACT

The use of plant gum-based biodegradable bioplastic films as a packaging material is limited due to their poor physicochemical properties. However, combining plant gum with synthetic degradable polymer and some additives can improve these properties. Keeping in view, the present study aimed to synthesize a series of bioplastic films using Moringa oleifera gum, polyvinyl alcohol, glycerol, and citric acid via thermal treatment followed by a solution casting method. The films were characterized using analytical techniques such as FTIR, XRD, SEM, AFM, TGA, and DSC. The study examined properties such as water sensitivity, gas barrier attributes, tensile strength, the shelf life of food, and biodegradability. The films containing higher citric acid amounts showed appreciable %elongation without compromising tensile strength, good oxygen barrier properties, and biodegradation rates (>95%). Varying the amounts of glycerol and citric acid in the films broadened their physicochemical properties ranging from hydrophilicity to hydrophobicity and rigidity to flexibility. As all the films were synthesized using economical and environmentally safe materials, and showed better physicochemical and barrier properties, this study suggests that these bioplastic films can prove to be a potential alternative for various packaging applications.


Subject(s)
Food Packaging , Moringa oleifera , Plant Gums , Polyvinyl Alcohol , Tensile Strength , Polyvinyl Alcohol/chemistry , Moringa oleifera/chemistry , Plant Gums/chemistry , Food Packaging/methods , Biodegradable Plastics/chemistry , Citric Acid/chemistry , Glycerol/chemistry , Biodegradation, Environmental , Hydrophobic and Hydrophilic Interactions
SELECTION OF CITATIONS
SEARCH DETAIL
...