Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem ; 18(11): 3974-84, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20471276

ABSTRACT

Anticancer drugs that bind to DNA and inhibit DNA-processing enzymes represent an important class of anticancer drugs. Combilexin molecules, which combine DNA minor groove binding and intercalating functionalities, have the potential for increased DNA binding affinity and increased selectivity due to their dual mode of DNA binding. This study describes the synthesis of DNA minor groove binder netropsin analogs containing either one or two N-methylpyrrole carboxamide groups linked to DNA-intercalating anthrapyrazoles. Those hybrid molecules which had both two N-methylpyrrole groups and terminal (dimethylamino)alkyl side chains displayed submicromolar cytotoxicity towards K562 human leukemia cells. The combilexins were also evaluated for DNA binding by measuring the increase in DNA melting temperature, for DNA topoisomerase IIalpha-mediated double strand cleavage of DNA, for inhibition of DNA topoisomerase IIalpha decatenation activity, and for inhibition of DNA topoisomerase I relaxation of DNA. Several of the compounds stabilized the DNA-topoisomerase IIalpha covalent complex indicating that they acted as topoisomerase IIalpha poisons. Some of the combilexins had higher affinity for DNA than their parent anthrapyrazoles. In conclusion, a novel group of compounds combining DNA intercalating anthrapyrazole groups and minor groove binding netropsin analogs have been designed, synthesized and biologically evaluated as possible novel anticancer agents.


Subject(s)
Amides/chemical synthesis , Antineoplastic Agents/chemical synthesis , DNA/metabolism , Amides/pharmacology , Anthracyclines/chemical synthesis , Anthracyclines/pharmacology , Antineoplastic Agents/pharmacology , DNA/chemistry , Drug Design , Humans , Intercalating Agents , K562 Cells , Netropsin , Pyrroles
2.
Chem Res Toxicol ; 23(6): 1097-104, 2010 Jun 21.
Article in English | MEDLINE | ID: mdl-20369834

ABSTRACT

DNA cross-linking was evaluated by liquid chromatography-tandem mass spectrometry to determine the relative cross-linking abilities of two aziridinylbenzoquinones. Reactivities of RH1 (2,5-diaziridinyl-3-[hydroxymethyl]-6-methyl-1,4-benzoquinone), a clinically studied antitumor cross-linking agent, and an analogue containing a phenyl group (2,5-diaziridinyl-3-[hydroxymethyl]-6-phenyl-1,4-benzoquinone, PhRH1) rather than a methyl group were compared. The bulky phenyl substituent was added to determine the impact of steric hindrance on the formation of cross-links within a double helical structure. Cross-links formed by RH1 and PhRH1 were observed at 5'-dGNC sites as well as 5'-dGAAC/dGTTC sites. RH1 was more effective at forming cross-links than PhRH1 for a variety of duplexes. Infrared multiphoton dissociation (IRMPD) and collision-induced dissociation results confirmed the presence and the location of the cross-links within the duplexes, and IRMPD was used to identify the dissociation pathways of the cross-linked duplexes.


Subject(s)
Antineoplastic Agents/chemistry , Aziridines/chemistry , Benzoquinones/chemistry , Cross-Linking Reagents/chemistry , DNA/chemistry , Chromatography, Liquid , Tandem Mass Spectrometry
3.
Analyst ; 134(10): 2058-66, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19768213

ABSTRACT

The alkylating proficiency of sulfur-containing mustards may be increased by using an acridine moiety to guide the sulfur mustard to its cellular target. In this study, the interactions of a new series of sulfur-containing acridine ligands, some that also function as alkylating mustards, with DNA were evaluated by electrospray ionization mass spectrometry (ESI-MS). Relative binding affinities were estimated from the ESI-MS data based on the fraction of bound DNA for DNA/acridine mixtures. The extent of binding observed for the series of sulfur-containing acridines was similar, presumably because the intercalating acridine moiety was identical. Upon infrared multi-photon dissociation (IRMPD) of the resulting oligonucleotide/sulfur-containing acridine complexes, ejection of the ligand was the dominant pathway for most of the complexes. However, for AS4, an acridine sulfide mustard, and AN1, an acridine nitrogen mustard, strand separation with the ligand remaining on one of the single strands was observed. At higher irradiation times, a variety of sequence ions were observed, some retaining the AS4/AN1 ligand, which was indicative of covalent binding.


Subject(s)
Acridines/chemistry , Acridines/metabolism , DNA/metabolism , Sulfur/chemistry , Base Sequence , DNA/chemistry , DNA/genetics , Ligands , Nucleic Acid Denaturation , Photons , Spectrometry, Mass, Electrospray Ionization , Transition Temperature
4.
Bioorg Med Chem ; 17(13): 4575-82, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-19457675

ABSTRACT

A series of amide-coupled bisanthrapyrazole derivatives of 7-chloro-2-[2-[(2-hydroxyethyl)methylamino]ethyl]anthra[1,9-cd]pyrazol-6(2H)-one (AP9) were designed using molecular modeling and docking and synthesized in order to develop an anticancer drug that formed a strongly binding bisintercalation complex with DNA. Concentration dependency for the increase in the DNA melting temperature was used to determine the DNA binding strength and whether bisintercalation occurred for the newly synthesized analogs. The ability of the compounds to inhibit the growth of the human erythroleukemic K562 cell line and inhibit the decatenation activity of DNA topoisomerase IIalpha was also measured. Finally, the compounds were evaluated for their ability to act as topoisomerase II poisons by measuring the topoisomerase IIalpha-mediated double strand cleavage of DNA. All of the bisanthrapyrazoles inhibited K562 cell growth and topoisomerase IIalpha in the low micromolar range. Compounds with either two or three methylene linkers formed bisintercalation complexes with DNA and bound as strongly as, or more strongly than, doxorubicin. In conclusion, a novel group of amide-coupled bisintercalating anthrapyrazole compounds were designed, synthesized, and evaluated for their physico-chemical and biologic properties as potential anticancer agents.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , DNA-Binding Proteins/antagonists & inhibitors , DNA/metabolism , Ethylenediamines/chemistry , Ethylenediamines/pharmacology , Pyrazoles/chemistry , Pyrazoles/pharmacology , Topoisomerase II Inhibitors , Antigens, Neoplasm/metabolism , Antineoplastic Agents/chemical synthesis , Binding Sites , Cell Line, Tumor , DNA/chemistry , DNA Cleavage/drug effects , DNA Topoisomerases, Type II/metabolism , DNA-Binding Proteins/metabolism , Ethylenediamines/chemical synthesis , Humans , Intercalating Agents/chemical synthesis , Intercalating Agents/chemistry , Intercalating Agents/pharmacology , Leukemia, Erythroblastic, Acute/drug therapy , Models, Molecular , Nucleic Acid Conformation , Nucleic Acid Denaturation/drug effects , Pyrazoles/chemical synthesis , Quantitative Structure-Activity Relationship
5.
Drug Target Insights ; 4: 1-8, 2009.
Article in English | MEDLINE | ID: mdl-21904446

ABSTRACT

NQO1 (NAD(P)H:quinoneoxidoreductase 1) is a reductive enzyme that is an important activator of bioreductive antitumor agents. NQO1 activity varies in individual tumors but is generally higher in tumor cells than in normal cells. NQO1 has been used as a target for tumor specific drug development. We investigated a series of bioreductive benzoquinone mustard analogs as a model for NQO1 targeted individualized cancer chemotherapy. We compared the tumor cell growth inhibitory activity of benzoquinone mustard analogs with sterically bulky groups of different size and placed at different positions on the benzoquinone ring, using tumor cell lines with different levels of NQO1. We demonstrated that functional groups of different steric size could be used to produce a series of bioreductive antitumor agents that were activated by different levels of NQO1 in tumor cells. This series of drugs could then be used to target cells with specific levels of NQO1 for growth inhibition and to avoid damage to normal cells, like bone marrow cells, that have low levels of NQO1. This approach could be used to develop new bioreductive antitumor agents for NQO1 targeted individualized cancer chemotherapy.

6.
Bioorg Med Chem ; 16(7): 3959-68, 2008 Apr 01.
Article in English | MEDLINE | ID: mdl-18258442

ABSTRACT

Anticancer drugs that bind to DNA and inhibit DNA-processing enzymes represent an important class of anticancer drugs. In order to find stronger DNA binding and more potent cytotoxic compounds, a series of ester-coupled bisanthrapyrazole derivatives of 7-chloro-2-[2-[(2-hydroxyethyl)methylamino]ethyl]anthra[1,9-cd]pyrazol-6(2H)-one (AP9) were designed and evaluated by molecular docking techniques. Because the anthrapyrazoles are unable to be reductively activated like doxorubicin and other anthracyclines, they should not be cardiotoxic like the anthracyclines. Based on the docking scores of a series of bisanthrapyrazoles with different numbers of methylene linkers (n) that were docked into an X-ray structure of double-stranded DNA, five bisanthrapyrazoles (n=1-5) were selected for synthesis and physical and biological evaluation. The synthesized compounds were evaluated for DNA binding and bisintercalation by measuring the DNA melting temperature increase, for growth inhibitory effects on the human erythroleukemic K562 cell line, and for DNA topoisomerase IIalpha-mediated cleavage of DNA and inhibition of DNA topoisomerase IIalpha decatenation activities. The results suggest that the bisanthrapyrazoles with n=2-5 formed bisintercalation complexes with DNA. In conclusion, a novel group of bisintercalating anthrapyrazole compounds have been designed, synthesized and biologically evaluated as possible anticancer agents.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , DNA/chemistry , Drug Design , Anthracyclines/chemical synthesis , Anthracyclines/chemistry , Anthracyclines/pharmacology , Antigens, Neoplasm/metabolism , Antineoplastic Agents/chemistry , Cell Line , Cell Survival/drug effects , DNA/metabolism , DNA Topoisomerases, Type II/metabolism , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/metabolism , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Models, Molecular , Molecular Structure , Neoplasms/enzymology , Neoplasms/pathology , Nucleic Acid Denaturation , Plasmids/chemistry , Plasmids/metabolism , Protein Binding , Quantitative Structure-Activity Relationship , Temperature , Topoisomerase II Inhibitors
7.
J Mass Spectrom ; 42(5): 681-8, 2007 May.
Article in English | MEDLINE | ID: mdl-17405184

ABSTRACT

Binding interactions of a new series of anthrapyrazoles (APs) with DNA were evaluated by electrospray ionization mass spectrometry (ESI-MS). Relative binding affinities were estimated from the ESI-MS data based on the fraction of bound DNA for DNA/anthrapyrazole mixtures, and they show a correlation to the shift in melting point of the DNA measured from a previous study. Minimal sequence specificity was observed for the series of anthrapyrazoles. Upon collisionally activated dissociation of the duplex/anthrapyrazole complexes, typically ejection of the ligand was the dominant pathway for most of the complexes. However, for complexes containing AP2 or mitoxantrone, strand separation with the ligand remaining on one of the single strands was observed, indicative of a different binding mode or stronger binding.


Subject(s)
DNA/chemistry , Anthracyclines/chemistry , Mitoxantrone/chemistry , Oligonucleotides/chemistry , Spectrometry, Mass, Electrospray Ionization/methods
8.
J Chem Inf Model ; 46(4): 1827-35, 2006.
Article in English | MEDLINE | ID: mdl-16859314

ABSTRACT

A series of 13 anthrapyrazole compounds that are analogues of piroxantrone and losoxantrone were synthesized, and their cell growth inhibitory effects, DNA binding, topoisomerase IIalpha mediated (EC 5.99.1.3) cleavage of DNA, and inhibition of DNA topoisomerase IIalpha decatenation catalytic activities were determined. Cell growth inhibitory activity was well-correlated with DNA binding, suggesting that these compounds may act by targeting DNA. However, cell growth inhibition was not well-correlated with the inhibition of topoisomerase IIalpha catalytic activity, suggesting that these anthrapyrazoles did not act solely by inhibiting the catalytic activity of topoisomerase II. Most of the analogues were able to induce DNA cleavage, and thus, it was concluded that they acted, at least in part, as topoisomerase II poisons. Structure-based three-dimensional quantitative structure-activity analyses (3D-QSAR) were carried out on the aligned structures of the anthrapyrazoles docked into DNA using comparative molecular field analysis (CoMFA) and comparative molecular similarity index (CoMSIA) analyses in order to determine the structural features responsible for their activity. Both CoMFA and CoMSIA yielded statistically significant models upon partial least-squares analyses. The 3D-QSAR analyses showed that hydrogen-bond donor interactions and electrostatic interactions with the protonated amino side chains of the anthrapyrazoles led to high cell growth inhibitory activity.


Subject(s)
Anthraquinones/chemistry , Anthraquinones/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazolones/chemistry , Pyrazolones/pharmacology , Anthracyclines/chemistry , Antigens, Neoplasm/drug effects , DNA/chemistry , DNA/drug effects , DNA Topoisomerases, Type II/drug effects , DNA-Binding Proteins/drug effects , Models, Molecular , Nucleic Acid Conformation , Nucleic Acid Denaturation , Quantitative Structure-Activity Relationship
9.
Oncol Rep ; 15(6): 1575-80, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16685398

ABSTRACT

Anthrapyrazoles have been investigated as cancer chemotherapeutic agents. The mechanism of action of these compounds is thought to involve inhibition of DNA topoisomerase II. A structure-activity study was carried out to determine the in vitro cytotoxic activity of nine novel anthrapyrazoles against human breast carcinoma, head and neck squamous cell carcinoma and leukemia cells, and against Chinese hamster ovary cells. The activity of these anthrapyrazole analogues was compared with that of two clinically tested anthrapyrazoles, losoxantrone and piroxantrone. Inhibition of topoisomerase II as a mechanism of action for the analogues was also investigated. The cytotoxic activity of the analogues was determined in vitro by MTT cell growth inhibition assay and inhibition of catalytic topoisomerase II activity by each compound was measured using a fluorometric DNA decatenation assay. All of the anthrapyrazole analogues inhibited the growth of the four cell lines with IC50 values that ranged from 0.1 to 45.2 microM. Losoxantrone was the most potent of the anthrapyrazole analogues studied. A tertiary amine in the basic side chain at N-2 increased the cytotoxic activity compared with a secondary amine in this side chain for many of the analogues, but not if there was a basic side chain at the C-5 position. A chlorine substituent on the basic side chain at N-2 did not have a consistent effect on activity. Moving the position of a chlorine substituent from C-5 to C-7 or introducing a basic side chain at C-5 did not have a consistent effect on cytotoxic activity. Anthrapyrazole analogues showed a broad range of activity for inhibiting topoisomerase II decatenation activity. Losoxantrone and piroxantrone were the most potent inhibitors of topoisomerase II activity. There was no significant correlation between the cytotoxic activity of the anthrapyrazole analogues and their ability to inhibit decatenation by topoisomerase II.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Topoisomerase II Inhibitors , Animals , Anthracyclines/chemistry , Anthracyclines/pharmacology , CHO Cells , Cricetinae , Cricetulus , DNA Topoisomerases, Type II/genetics , Drug Screening Assays, Antitumor , Humans , Inhibitory Concentration 50 , K562 Cells , Quantitative Structure-Activity Relationship
10.
Cancer Chemother Pharmacol ; 57(2): 221-33, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16010589

ABSTRACT

PURPOSE: Quantitative structure-activity studies were performed on a series of benzoquinone mustard (BM) bifunctional alkylating agents to determine whether DNA topoisomerase II (topo II) inhibition was responsible for cell growth inhibition. METHODS: Topo II inhibition was evaluated by decatenation and agarose gel electrophoresis assays. RESULTS: The BM compounds were shown to potently inhibit the decatenation activity of topo II. Though BM compounds promoted the formation of protein-DNA complexes in isolated nuclei and cells, this effect was undiminished when levels of topo II varied. The BM compounds had little activity in a topo II-mediated DNA cleavage assay, suggesting that they do not function as topo II poisons. Rather, BM-induced protein-DNA complex formation was likely due to the bifunctional alkylating reactivity of these compounds. Finally, the growth inhibitory properties of these compounds did not correlate with their ability to inhibit topo II, indicating that these compounds did not exert their cellular activity through inhibition of topo II. Some BM compounds reacted very quickly with glutathione and cysteine, likely initially through an electrophilic Michael addition. In the absence of cysteine, the growth inhibitory effects of BM were increased tenfold, indicating the modulatory effect of cysteine sulfhydryl adducts. EPR studies showed that a semiquinone-free radical was produced by some BM compounds. CONCLUSIONS: BM compounds likely exert their action through DNA cross-linking and/or by inducing oxidative stress. Although topo II is not a direct target of these agents, this enzyme may play a role in processing the consequences of direct DNA adduction and/or oxidative DNA damage.


Subject(s)
Alkylating Agents/pharmacology , Benzoquinones/pharmacology , DNA Adducts , Topoisomerase II Inhibitors , Animals , Benzoquinones/chemistry , CHO Cells , Cell Proliferation , Cricetinae , DNA Damage , DNA Topoisomerases, Type II/metabolism , Drug Interactions , Electrophoresis, Agar Gel , Leukemia/pathology , Oxidative Stress , Quantitative Structure-Activity Relationship , Structure-Activity Relationship , Tumor Cells, Cultured
11.
Cancer Chemother Pharmacol ; 53(3): 191-203, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14614574

ABSTRACT

PURPOSE: Structure-activity studies were carried out with the model bioreductive alkylating agent benzoquinone mustard (BM) and its structural analogs. The specific objectives were: (1) to investigate the effects of functional group substitutions to the benzoquinone ring on DNA crosslink and strand break formation subsequent to reduction of the analogs by DT-diaphorase (DTD) in vitro, (2) to correlate DNA crosslink and strand break formation by the analogs with anaerobic reduction of the BM analogs by DTD and their redox cycling in vitro, and (3) to correlate DNA crosslink and strand break formation by the BM analogs with their cytotoxic effects in cancer cells. METHODS: DNA interstrand crosslink and single-strand break formation were assessed using agarose gel assays. To determine DNA interstrand crosslinks or single-strand breaks, linearized or supercoiled plasmid DNA, respectively, were incubated with purified human DTD and increasing concentrations of each BM analog. Subsequently, DNA was electrophoresed on an agarose gel and DNA crosslink and strand break formation were quantified using densitometry. The rates of reduction of the BM analogs by purified human DTD were measured in vitro under hypoxic conditions, and the redox cycling potential was determined under aerobic conditions using HPLC analysis. The cytotoxic activities of these agents in human tumor cell lines were measured by the MTT assay, with and without the DTD inhibitor, dicoumarol. RESULTS: BM analogs with electron-donating groups (MeBM, MBM, m-MeBM), electron-withdrawing groups (CBM, FBM), sterically bulky groups (PBM, m-PBM, m-TBM) and positional isomers (MeBM, m-MeBM, PBM, m-PBM) were synthesized. After reduction by DTD, the BM analogs produced a concentration-dependent increase in DNA crosslink and DNA strand break formation. The E(10) (extent of DNA crosslink formation produced by 10 micro M BM analog) for DNA crosslink formation displayed the rank order MeBM approximately MBM>m-MeBM approximately PBM approximately BM>CBM>FBM>m-PBM approximately m-TBM. For DNA strand break formation, the E(10) values (extent of DNA strand break formation produced by 10 micro M BM analog) displayed the rank order MeBM>MBM>m-MeBM>PBM>BM approximately CBM>FBM>m-PBM approximately m-TBM. Importantly, the cytotoxic activity of the BM analogs in SK-Mel-28 human melanoma cells correlated positively with the E(10) values for DTD-mediated DNA crosslink formation ( r(s)=0.87, P<0.05) and DNA strand break formation ( r(s)=0.95, P<0.05). Similar correlations were observed in NCI-H661 human lung carcinoma cells. Furthermore, the D(10) values (concentration of BM analog that decreased the surviving cell fraction to 0.1) for cytotoxic activity of the BM analogs correlated with the maximum levels of DNA crosslinks formed with each BM analog, with r(s) values of -0.85 ( P<0.05) for the NCI-H661 cell line, and -0.81 ( P<0.05) for the SK-MEL-28 cell line. The half-time of reduction (t(1/2)) of the BM analogs by DTD did not correlate with DNA crosslink formation, DNA strand break formation, or cytotoxic potency of the analogs. CONCLUSIONS: Functional groups on the benzoquinone ring affect the ability of BM to produce DNA crosslinks and strand breaks following reduction by DTD. Electron-donating groups increased DNA damage, whereas electron-withdrawing groups and sterically bulky groups at the C6 position had no effect or decreased the ability of the compounds to produce DNA damage compared to BM. Moreover, both DNA crosslink and strand break formation appear to have an important impact on the cytotoxicity of the BM analogs. These results may have significance for optimal use of BM-based antitumor agents and for rationalization of the development of novel therapeutic compounds that require bioactivation by DTD.


Subject(s)
Antineoplastic Agents, Alkylating/chemistry , Antineoplastic Agents, Alkylating/toxicity , Benzoquinones/chemistry , Benzoquinones/toxicity , DNA Damage , NAD(P)H Dehydrogenase (Quinone)/metabolism , Antineoplastic Agents, Alkylating/metabolism , Benzoquinones/metabolism , Cell Line, Tumor , Cross-Linking Reagents/chemistry , Cross-Linking Reagents/metabolism , Cross-Linking Reagents/toxicity , DNA/analysis , Dose-Response Relationship, Drug , Humans , Oxidation-Reduction , Structure-Activity Relationship
12.
Cancer Chemother Pharmacol ; 49(2): 101-10, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11862423

ABSTRACT

PURPOSE: Bioreductive antitumor agents are an important class of anticancer drugs that include the clinically used drug, mitomycin C, and new agents such as EO9 and tirapazamine that have recently been tested in clinical trials. These agents require activation by reductive enzymes such as DT-diaphorase or NADPH:cytochrome P450 reductase. A major focus for improving cancer chemotherapy has been to increase the selectivity and targeting of antitumor drugs to tumor cells. Bioreductive antitumor agents are ideally suited to improving tumor selectivity by an enzyme-directed approach to tumor targeting. However, none of the bioreductive agents developed to date has been specific for activation by a single reductive enzyme. This is in part due to a lack of knowledge about structural factors that confer selectivity for activation by reductive enzymes. The purpose of this study was to investigate the ability of specific functional groups to modify reduction and activation of quinone bioreductive agents by DT-diaphorase. METHODS: We used a series of model benzoquinone mustard (BM) bioreductive agents and compared the parent compound BM to MBM, which has a strong electron-donating methoxy group, MeBM, which has a weaker electron-donating methyl group, CBM, which has an electron-withdrawing chloro group, and PBM and its structural isomer, meta-PBM (m-PBM), which both have sterically bulky benzene rings attached to the quinone moiety. We determined the rate of reduction of these agents by purified human DT-diaphorase under hypoxic and aerobic conditions. We also measured the cytotoxic activity of these agents in human tumor cell lines with and without the DT-diaphorase inhibitor, dicoumarol. RESULTS: Under hypoxic conditions in vitro, the t(1/2) values for reduction of the analogs by purified DT-diaphorase were 4, 6, 8, 9, 10 and 21 min for BM, MeBM, CBM, MBM, PBM and m-PBM, respectively. Under aerobic conditions the rank order of redox cycling after two-electron reduction by DT-diaphorase was MBM > MeBM > BM approximately CBM approximately PBM approximately m-PBM. The rate of reduction by DT-diaphorase of HBM, a non-alkylating analog of BM, was similar to that of BM under hypoxic conditions, and the rate of redox cycling under aerobic conditions was comparable to that of BM, suggesting that structural changes to the cytotoxic group of these BMs do not affect DT-diaphorase-mediated reduction and redox cycling potential. MBM, MeBM and PBM were more toxic than BM in the NCI-H661 human non-small-cell lung cancer cells and SK-MEL-28 human melanoma cells, while CBM displayed significantly increased cytotoxic activity compared to BM only in the NCI H661 cells. m-PBM had similar cytotoxic activity compared with BM in both cell lines. These cell lines have moderate to high levels of DT-diaphorase activity. When cells were pretreated with the DT-diaphorase inhibitor, dicoumarol, the cytotoxic activity of BM increased while that of MBM decreased in both cell lines, suggesting that BM was inactivated by DT-diaphorase while MBM was activated by this enzyme. Pretreatment of the SK-MEL-28 melanoma cells with dicoumarol resulted in an increased cytotoxic activity of MeBM, but pretreatment of the NCI-H661 cells did not affect the cytotoxicity of MeBM. This suggests, that similar to the results with BM, DT-diaphorase is an inactivating enzyme for MeBM in the SK-MEL-28 cell line. Dicoumarol had no significant effect on the cytotoxicity of CBM, PBM or m-PBM in both cell lines. CONCLUSIONS: These studies demonstrated that functional groups can significantly affect the reduction and activation of bioreductive agents by DT-diaphorase. All the functional groups decreased the rate of reduction of the quinone group by DT-diaphorase. Since MeBM and MBM, with electron-donating functional groups, and CBM with an electron-withdrawing functional group had similar half-lives of reduction by DT-diaphorase, steric rather than electronic effects of the functional groups appear to be more important for modifying the rate of reduction by DT-diaphorase. Steric effects on reduction by DT-diaphorase were also influenced by the position of the functional group on the quinone ring moiety, as the reduction of m-PBM was much slower than the reduction of PBM. The electron-donating methoxy and methyl functional groups increased the ability of the reduced products of MBM and MeBM to undergo redox cycling. DT-diaphorase appeared to be an activating enzyme for MBM. This may have resulted in part from increased formation of reactive oxygen species resulting from the increased redox cycling by MBM. In contrast, DT-diaphorase was an inactivating enzyme for BM, and for MeBM in the SK-MEL-28 melanoma cells, possibly because the hydroquinone product of BM and MeBM may be less cytotoxic than the semiquinone produced by one-electron reduction by NADPH:cytochrome P450 reductase.


Subject(s)
Antineoplastic Agents/metabolism , Benzoquinones/metabolism , NAD(P)H Dehydrogenase (Quinone)/metabolism , Antineoplastic Agents/pharmacology , Benzoquinones/pharmacology , Biotransformation , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , NAD/metabolism , Oxidation-Reduction , Structure-Activity Relationship , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...