Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Model ; 26(2): 33, 2020 Jan 25.
Article in English | MEDLINE | ID: mdl-31982975

ABSTRACT

The non-dissociative and dissociative adsorptions of zwitterionic Gly on graphene oxide (GO) was studied in the framework of DFT using a cluster model approach. In this work, the interaction with an epoxy group of GO basal plane was mainly considered. As a comparison, the non-dissociative and dissociative adsorptions of neutral Gly were also taken into account. The non-dissociative adsorption modes for zwitterionic and neutral Gly conformers show binding energies of 12.2 and 14.4 kcal mol-1, respectively. These molecules are thought to remain over the GO surface due to attractive noncovalent interactions. Two dissociative adsorption modes, for Z-Gly and N-Gly, show smaller binding energies of 7.2 and 8.4 kcal mol-1, where the deprotonated species links strongly through a C-O or C-N covalent bond to the GO surface. The results obtained in the present theoretical approach to the glycine/graphene oxide system support the fact that glycine can be attached to epoxy groups of graphene oxide basal planes in addition to the anchoring on edge oxidation groups. In summary, we conclude that glycine can be used as a reducing agent as well as a functionalizer of GO sheets.


Subject(s)
Glycine/chemistry , Graphite/chemistry , Models, Chemical , Adsorption
2.
J Mol Model ; 25(1): 16, 2019 Jan 04.
Article in English | MEDLINE | ID: mdl-30610386

ABSTRACT

A computational DFT study of the reaction mechanism of hydrogenation and hydration of carbon dioxide is presented. It has been found that hydrogenation and hydration are endoenergetic reactions that are carried out in two steps, passing by a stable intermediate that is surrounded by energy barriers of 70 kcal/mol and 10 kcal/mol for hydrogenation and 50 kcal/mol and 10 kcal/mol for hydration. Using the reaction force analysis, we were able to characterize the physical nature of the activation barriers and found that activation energies are mostly due to structural rearrangements. An interesting difference in the reaction mechanisms disclosed by the reaction force and electronic flux analyses is that while in the hydrogenation reaction the mechanisms is conditioned by the H2 cleavage with a high energy barrier, in the hydration reaction the formation of a transient four member ring structure favoring an attractive local hydrogen bond interaction pushes the reaction toward the product with a considerably lower energy barrier.

SELECTION OF CITATIONS
SEARCH DETAIL
...