Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 7(42): 37807-37824, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36312349

ABSTRACT

A corrosion inhibition mechanism of API 5L X60 steel exposed to 1.0 M H2SO4 was proposed from the evaluation of three vinylalkylimidazolium poly(ionic liquids) (PILs), employing electrochemical and surface analysis techniques. The synthesized PILs were classified as mixed-type inhibitors whose surface adsorption was promoted mainly by bromide and imidazolate ions, which along with vinylimidazolium cations exerted a resistive effect driven by a charge transfer process by means of a protective PIL film with maximal efficiency of 85% at 175 ppm; the steel surface displayed less surface damage due to the formation of metal-PIL complex compounds.

2.
RSC Adv ; 12(20): 12273-12282, 2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35480365

ABSTRACT

The synthesis of terpolymers can lead to very interesting combinations of monomers, which can affect the solubility of the polymer, its thermal stability or resistance in saline aqueous media. Free-radical inverse microemulsion and solution polymerization techniques were used to prepare water-soluble acrylamide-N-vinylpyrrolidone-(vinylbenzyl)trimethylammonium chloride terpolymers. The formulation of the polymerizable microemulsion was optimized by using the screening of surfactant percentage and HLB concept. The influence of synthesis temperature on the terpolymer composition and molecular weight was investigated. The reactions were carried out at 60, 70, and 75 °C for the microemulsion technique and at 40, 50, and 55 °C for the solution polymerization technique. The reaction products from both processes were water-soluble polymers, and the two techniques reached high conversions and molecular masses. Maximal molecular weights were displayed by terpolymers prepared by the solution method at 40 °C (959, 840 g mol-1) and the inverse microemulsion method at 60 °C (795, 994 g mol-1). According to NMR analysis, the highest amount of (vinylbenzyl) trimethylammonium chloride was incorporated into the terpolymer structure by the inverse microemulsion method. In contrast, the solution method yielded higher contents of acrylamide and N-vinylpyrrolidone. The viscosity properties of the terpolymers in aqueous solutions were directly correlated to their molecular weight and synthesis conditions.

3.
Materials (Basel) ; 8(4): 1951-1965, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-28788041

ABSTRACT

A series of new organic polyimides were synthesized from 4-fluoro-4'4"-diaminotriphenylmethane and four different aromatic dianhydrides through a one-step, high-temperature, direct polycondensation in m-cresol at 180-200 °C, resulting in the formation of high-molecular-weight polyimides (inherent viscosities ~ 1.0-1.3 dL/g). All the resulting polyimides exhibited good thermal stability with initial decomposition temperatures above 434 °C, glass-transition temperatures between 285 and 316 °C, and good solubility in polar aprotic solvents. Wide-angle X-ray scattering data indicated that the polyimides were amorphous. Dense membranes were prepared by solution casting and solvent evaporation to evaluate their gas transport properties (permeability, diffusivity, and solubility coefficients) toward pure hydrogen, helium, oxygen, nitrogen, methane, and carbon dioxide gases. In general, the gas permeability was increased as both the fractional free volume and d-spacing were also increased. A good combination of permeability and selectivity was promoted efficiently by the bulky hexafluoroisopropylidene and 4-fluoro-phenyl groups introduced into the polyimides. The results indicate that the gas transport properties of these films depend on both the structure of the anhydride moiety, which controls the intrinsic intramolecular rigidity, and the 4-fluoro-phenyl pendant group, which disrupts the intermolecular packing.

4.
Materials (Basel) ; 7(8): 5711-5734, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-28788156

ABSTRACT

Compounds of poly(ionic liquid)s (PILs), derived from imidazole with different alkylic chain lengths located in the third position of the imidazolium ring (poly(1-vinyl-3-dodecyl-imidazolium) (PImC12), poly(1-vinyl-3-octylimidazolium) (PImC8) and poly(1-vinyl-3-butylimidazolium) (PImC4) hexafluorophosphate) were synthesized. These compounds were tested as corrosion inhibitors on aluminum alloy AA6061 in diluted sulfuric acid (0.1-1 M H2SO4) by weight loss tests, polarization resistance measurements and inductively coupled plasma optical emission spectroscopy. Langmuir's isotherms suggested film formation on bare alloy while standard free energy indicated inhibition by a physisorption process. However, compound efficiencies as inhibitors ranked low (PImC12 > PImC8 > PImC4) to reach 61% for PImC12 in highly diluted acidic solution. Apparently, the high mobility of sulfates favored their adsorption in comparison to PILs. The surface film displayed general corrosion, and pitting occurred as a consequence of PILs' partial inhibition along with a continuous dissolution of defective patchy film on formation. A slight improvement in efficiency was displayed by compounds having high molecular weight and a long alkyl chain, as a consequence of steric hindrance and PIL interactions.

5.
Comb Chem High Throughput Screen ; 15(5): 427-32, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22263864

ABSTRACT

Fifty-six ionic liquids were efficiently synthesized in parallel format under one-pot, solvent-free microwave-assisted synthesis. These compounds were evaluated as extracting agents of nitrogen-containing compounds from a real Diesel feed before being submitted to the hydrodesulfurization process to obtain ultralow sulfur Diesel. Our results showed that halogenated ionic liquids are an excellent alternative due to these ionic liquids are relatively inexpensive, presenting a high selectivity for the extraction of nitrogen-containing compounds and can be regenerated and recycled.


Subject(s)
Gasoline/analysis , Ionic Liquids/chemical synthesis , Liquid-Liquid Extraction/methods , Microwaves , Nitrogen Compounds/chemistry , Sulfur Compounds/chemistry
6.
Mol Divers ; 14(4): 777-87, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20091120

ABSTRACT

Seventy five ionic liquids (ILs) were tested as a sequestering agent of sulfured compounds in natural gasoline (NG). Desulphurization of NG was performed by means of liquid-liquid extraction method at room temperature and atmospheric pressure. Experimental ILs containing imidazolium, pyridinium, and ammonium cations along with organic and inorganic anions were synthesized conventionally and under microwave and sonochemical conditions. The effect of the molecular structure of ILs on the desulfurization efficiency of NG with high sulfur content was evaluated. Analysis indicated that the anion type played a more important role than the cation on the desulphurization process. ILs based on halogen-ferrates and halogen-aluminates exhibited the highest efficiency in sulfur removal, and their efficiency is further improved when there is an excess of metallic salt in a ratio of at least 1:1.3 during the synthesis of the corresponding IL. An explanation for the ability of metallic ILs to remove sulfur-containing compounds from natural gasoline based on the ratio of the ionic charge to the atomic radius is proposed. Furthermore, a method to recover and reuse water-sensitive to halogenated precursors is described.


Subject(s)
Chemical Fractionation/methods , Gasoline , Ionic Liquids/chemistry , Ionic Liquids/pharmacology , Sulfur Compounds/chemistry , Sulfur/isolation & purification , Chromatography, Liquid/methods , Drug Evaluation, Preclinical/methods , Efficiency , Gasoline/analysis , Hydrogen Bonding , Models, Biological , Sulfur/chemistry , Sulfur/metabolism , Sulfur Compounds/analysis , Sulfur Compounds/pharmacokinetics
7.
Mol Divers ; 9(4): 361-9, 2005.
Article in English | MEDLINE | ID: mdl-16311813

ABSTRACT

A versatile route to 40-membered library of 2-long alkyl chain substituted benzoazoles (1 and 2) and azole[4,5-b]pyridines (3 and 4) via microwave-assisted combinatorial synthesis was developed. The reactions were carried out in both monomode and multimode microwave oven. With the latter, all reactions were performed in high-throughput experimental settings consisting of an 8 x 5 combinatorial library designed to synthesize 40 compounds. Each step, from the addition of reagents to the recovery of final products, was automated. The microwave-assisted N-long chain alkylation reactions of 2-alkyl-1H-benzimidazole (1) and 2-alkyl-1H-benzimidazole[4,5-b] pyridines (3) were also studied.


Subject(s)
Azoles/chemical synthesis , Combinatorial Chemistry Techniques , Microwaves , Pyridines/chemical synthesis , Alkylation , Azoles/chemistry , Pyridines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...