Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Lett ; 594: 216965, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38788967

ABSTRACT

Pro-survival BCL-2 proteins prevent the initiation of intrinsic apoptosis (mitochondria-dependent pathway) by inhibiting the pro-apoptotic proteins BAX and BAK, while BH3-only proteins promote apoptosis by blocking pro-survival BCL-2 proteins. Disruptions in this delicate balance contribute to cancer cell survival and chemoresistance. Recent advances in cancer therapeutics involve a new generation of drugs known as BH3-mimetics, which are small molecules designed to mimic the action of BH3-only proteins. Promising effects have been observed in patients with hematological and solid tumors undergoing treatment with these agents. However, the rapid emergence of mitochondria-dependent resistance to BH3-mimetics has been reported. This resistance involves increased mitochondrial respiration, altered mitophagy, and mitochondria with higher and tighter cristae. Conversely, mutations in isocitrate dehydrogenase 1 and 2, catalyzing R-2-hydroxyglutarate production, promote sensitivity to venetoclax. This evidence underscores the urgency for comprehensive studies on bioenergetics-based adaptive responses in both BH3 mimetics-sensitive and -resistant cancer cells. Ongoing clinical trials are evaluating BH3-mimetics in combination with standard chemotherapeutics. In this article, we discuss the role of mitochondrial bioenergetics in response to BH3-mimetics and explore potential therapeutic opportunities through metabolism-targeting strategies.


Subject(s)
Antineoplastic Agents , Energy Metabolism , Mitochondria , Neoplasms , Proto-Oncogene Proteins c-bcl-2 , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Energy Metabolism/drug effects , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Drug Resistance, Neoplasm/drug effects , Animals
2.
Front Immunol ; 13: 1035589, 2022.
Article in English | MEDLINE | ID: mdl-36713380

ABSTRACT

Introduction: Chronic Chagasic cardiomyopathy (CCC), caused by the protozoan Trypanosoma cruzi, is the most severe manifestation of Chagas disease.CCC is characterized by cardiac inflammation and fibrosis caused by a persistent inflammatory response. Following infection, macrophages secrete inflammatory mediators such as IL-1ß, IL-6, and TNF-α to control parasitemia. Although this response contains parasite infection, it causes damage to the heart tissue. Thus, the use of immunomodulators is a rational alternative to CCC. Rho-associated kinase (ROCK) 1 and 2 are RhoA-activated serine/threonine kinases that regulate the actomyosin cytoskeleton. Both ROCKs have been implicated in the polarization of macrophages towards an M1 (pro-inflammatory) phenotype. Statins are FDA-approved lipid-lowering drugs that reduce RhoA signaling by inhibiting geranylgeranyl pyrophosphate (GGPP) synthesis. This work aims to identify the effect of statins on U937 macrophage polarization and cardiac tissue inflammation and its relationship with ROCK activity during T. cruzi infection. Methods: PMA-induced, wild-type, GFP-, CA-ROCK1- and CA-ROCK2-expressing U937 macrophages were incubated with atorvastatin, or the inhibitors Y-27632, JSH-23, TAK-242, or C3 exoenzyme incubated with or without T. cruzi trypomastigotes for 30 min to evaluate the activity of ROCK and the M1 and M2 cytokine expression and secretion profiling. Also, ROCK activity was determined in T. cruzi-infected, BALB/c mice hearts. Results: In this study, we demonstrate for the first time in macrophages that incubation with T. cruzi leads to ROCK activation via the TLR4 pathway, which triggers NF-κB activation. Inhibition of ROCKs by Y-27632 prevents NF-κB activation and the expression and secretion of M1 markers, as does treatment with atorvastatin. Furthermore, we show that the effect of atorvastatin on the NF-kB pathway and cytokine secretion is mediated by ROCK. Finally, statin treatment decreased ROCK activation and expression, and the pro-inflammatory cytokine production, promoting anti-inflammatory cytokine expression in chronic chagasic mice hearts. Conclusion: These results suggest that the statin modulation of the inflammatory response due to ROCK inhibition is a potential pharmacological strategy to prevent cardiac inflammation in CCC.


Subject(s)
Cardiomyopathies , Chagas Disease , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Trypanosoma cruzi , Humans , Animals , Mice , Trypanosoma cruzi/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , rho-Associated Kinases/metabolism , NF-kappa B/metabolism , Atorvastatin/pharmacology , U937 Cells , Macrophages/metabolism , Chagas Disease/genetics , Cytokines/metabolism , Cardiomyopathies/metabolism , Inflammation/metabolism
3.
PLoS Negl Trop Dis ; 15(11): e0009978, 2021 11.
Article in English | MEDLINE | ID: mdl-34784372

ABSTRACT

BACKGROUND: Chagas disease, caused by the protozoan Trypanosoma cruzi, is endemic in Latin America and is widely distributed worldwide because of migration. In 30% of cases, after years of infection and in the absence of treatment, the disease progresses from an acute asymptomatic phase to a chronic inflammatory cardiomyopathy, leading to heart failure and death. An inadequate balance in the inflammatory response is involved in the progression of chronic Chagas cardiomyopathy. Current therapeutic strategies cannot prevent or reverse the heart damage caused by the parasite. Aspirin-triggered resolvin D1 (AT-RvD1) is a pro-resolving mediator of inflammation that acts through N-formyl peptide receptor 2 (FPR2). AT-RvD1 participates in the modification of cytokine production, inhibition of leukocyte recruitment and efferocytosis, macrophage switching to a nonphlogistic phenotype, and the promotion of healing, thus restoring organ function. In the present study, AT-RvD1 is proposed as a potential therapeutic agent to regulate the pro-inflammatory state during the early chronic phase of Chagas disease. METHODOLOGY/PRINCIPAL FINDINGS: C57BL/6 wild-type and FPR2 knock-out mice chronically infected with T. cruzi were treated for 20 days with 5 µg/kg/day AT-RvD1, 30 mg/kg/day benznidazole, or the combination of 5 µg/kg/day AT-RvD1 and 5 mg/kg/day benznidazole. At the end of treatment, changes in immune response, cardiac tissue damage, and parasite load were evaluated. The administration of AT-RvD1 in the early chronic phase of T. cruzi infection regulated the inflammatory response both at the systemic level and in the cardiac tissue, and it reduced cellular infiltrates, cardiomyocyte hypertrophy, fibrosis, and the parasite load in the heart tissue. CONCLUSIONS/SIGNIFICANCE: AT-RvD1 was shown to be an attractive therapeutic due to its regulatory effect on the inflammatory response at the cardiac level and its ability to reduce the parasite load during early chronic T. cruzi infection, thereby preventing the chronic cardiac damage induced by the parasite.


Subject(s)
Chagas Cardiomyopathy/drug therapy , Docosahexaenoic Acids/administration & dosage , Animals , Chagas Cardiomyopathy/genetics , Chagas Cardiomyopathy/immunology , Chagas Cardiomyopathy/parasitology , Chronic Disease/drug therapy , Disease Models, Animal , Female , Heart/drug effects , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocardium/immunology , Nitroimidazoles/administration & dosage , Parasite Load , Receptors, Formyl Peptide/genetics , Receptors, Formyl Peptide/immunology , Trypanosoma cruzi/physiology
4.
Antioxidants (Basel) ; 10(10)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34679752

ABSTRACT

Since breast cancer (BC) cells are dependent on mitochondrial bioenergetics for promoting proliferation, survival, and metastasis, mitochondria highlight as an important target for anticancer drug discovery. FRI-1, methyl 1, 3-dimethyl-5, 8-dioxo-5, 8-dihydro-4-isoquinolinecarboxylate, was previously described as a selective cytotoxic compound on cancer cell lines, however, details on the mechanism of action remain unknown. In this work, we describe that FRI-1 inhibits mitochondrial bioenergetics, producing apoptosis in MCF7 and MDA-MB-231 BC cell lines. FRI-1 decreases the maximal oxygen consumption rate (OCR), Δψm, NADH, and ATP levels, with a notable increase of mitochondrial reactive oxygen species (ROS) production, promoting AMPK activation with pro-survival effects. Moreover, FRI-1 inhibits the metabolic remodeling to glycolysis induced by oligomycin. In isolated tumoral mitochondria, FRI-1 increases Complex I and III-dependent OCR state 2, and this is sensitive to rotenone and antimycin A inhibitor additions, suggesting a redox cycling event. Remarkably, α-ketoglutarate and lipoic acid supplementation reversed and promoted, respectively, the FRI-1-induced apoptosis, suggesting that mitochondrial redox disruption affects 2-oxoglutarate dehydrogenase (OGDH) activity, and this is involved in their anticancer mechanism. Consistent with this, the combination of FRI-1 and CPI-613, a dual inhibitor of redox-sensible tricarboxylic acid (TCA) cycle enzymes PDH and OGDH, produced extensive BC cell death. Taken together, our results suggest that FRI-1 exhibits anticancer effects through inhibition of mitochondrial bioenergetics by redox disruption in BC cells.

5.
Article in English | MEDLINE | ID: mdl-32393497

ABSTRACT

Chagas disease, caused by the protozoan Trypanosoma cruzi, endemic in Latin America but distributed worldwide because of migration. Without appropriate treatment, the disease progresses from an acute asymptomatic phase to a chronic, progressive inflammatory cardiomyopathy causing heart failure and death. Despite specific trypanocidal therapy, heart damage progression cannot be stopped or reversed. Statins, as part of their pleiotropic actions, can modulate chagasic myocarditis by inducing the production of 15-epi-lipoxin A4 (15-epi-LXA4), a proresolution lipid mediator in inflammation. Furthermore, several reports suggest that simvastatin activates the Notch pathway after stroke in cerebral endothelial cells, enhancing blood flow by promoting angiogenesis. Thus, statins are an attractive therapeutic strategy for modulating the Notch pathway to reverse the chronic heart damage induced by T. cruzi BALB/c mice chronically infected with T. cruzi were treated with 1 mg/kg/day simvastatin or 25 µg/kg/day 15-epi-LXA4 for 20 days. During the treatment period, cardiac function was evaluated by echocardiography. At 80 days postinfection, the heart tissues were assessed for Notch 1 activity. T. cruzi infection activated the Notch 1 pathway, and simvastatin (but not 15-epi-lipoxin A4) produced a further increase in that activity, correlating with improvement in the ejection fraction and histopathologic findings typical of T. cruzi infection, including improvements in inflammation and fibrosis. Moreover, simvastatin increased the number of isolectin B4-positive cells, suggesting active angiogenesis in the chronically infected hearts without alteration of the parasitic load. Simvastatin, probably acting through the Notch 1 pathway, decreases inflammation, improving cardiac function in mice chronically infected with T. cruzi.


Subject(s)
Chagas Cardiomyopathy , Chagas Disease , Trypanosoma cruzi , Animals , Chagas Cardiomyopathy/drug therapy , Endothelial Cells , Mice , Mice, Inbred BALB C , Simvastatin/pharmacology , Simvastatin/therapeutic use
6.
Cells ; 9(2)2020 02 11.
Article in English | MEDLINE | ID: mdl-32053908

ABSTRACT

The mitochondrion has emerged as a promising therapeutic target for novel cancer treatments because of its essential role in tumorigenesis and resistance to chemotherapy. Previously, we described a natural compound, 10-((2,5-dihydroxybenzoyl)oxy)decyl) triphenylphosphonium bromide (GA-TPP+C10), with a hydroquinone scaffold that selectively targets the mitochondria of breast cancer (BC) cells by binding to the triphenylphosphonium group as a chemical chaperone; however, the mechanism of action remains unclear. In this work, we showed that GA-TPP+C10 causes time-dependent complex inhibition of the mitochondrial bioenergetics of BC cells, characterized by (1) an initial phase of mitochondrial uptake with an uncoupling effect of oxidative phosphorylation, as previously reported, (2) inhibition of Complex I-dependent respiration, and (3) a late phase of mitochondrial accumulation with inhibition of α-ketoglutarate dehydrogenase complex (αKGDHC) activity. These events led to cell cycle arrest in the G1 phase and cell death at 24 and 48 h of exposure, and the cells were rescued by the addition of the cell-penetrating metabolic intermediates l-aspartic acid ß-methyl ester (mAsp) and dimethyl α-ketoglutarate (dm-KG). In addition, this unexpected blocking of mitochondrial function triggered metabolic remodeling toward glycolysis, AMPK activation, increased expression of proliferator-activated receptor gamma coactivator 1-alpha (pgc1α) and electron transport chain (ETC) component-related genes encoded by mitochondrial DNA and downregulation of the uncoupling proteins ucp3 and ucp4, suggesting an AMPK-dependent prosurvival adaptive response in cancer cells. Consistent with this finding, we showed that inhibition of mitochondrial translation with doxycycline, a broad-spectrum antibiotic that inhibits the 28 S subunit of the mitochondrial ribosome, in the presence of GA-TPP+C10 significantly reduces the mt-CO1 and VDAC protein levels and the FCCP-stimulated maximal electron flux and promotes selective and synergistic cytotoxic effects on BC cells at 24 h of treatment. Based on our results, we propose that this combined strategy based on blockage of the adaptive response induced by mitochondrial bioenergetic inhibition may have therapeutic relevance in BC.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Mitochondria/drug effects , Protein Biosynthesis/drug effects , AMP-Activated Protein Kinase Kinases , Apoptosis/drug effects , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Doxycycline/pharmacology , Drug Synergism , Female , Gentisates/chemistry , Gentisates/pharmacology , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Humans , Ketoglutarate Dehydrogenase Complex/antagonists & inhibitors , Ketoglutarate Dehydrogenase Complex/genetics , Mitochondria/pathology , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/pharmacology , Oxidative Phosphorylation/drug effects , Protein Kinases/genetics , Ribosomes/drug effects
7.
Cell Biol Int ; 44(5): 1112-1123, 2020 May.
Article in English | MEDLINE | ID: mdl-31943572

ABSTRACT

Chagas disease is a vector-borne disease caused by the protozoan parasite Trypanosoma cruzi. Current therapy involves benznidazole. Benznidazole and other drugs can modify gene expression patterns, improving the response to the inflammatory influx induced by T. cruzi and decreasing the endothelial activation or immune cell recruitment, among other effects. Here, we performed a microarray analysis of human umbilical vein endothelial cells (HUVECs) treated with benznidazole and the anti-inflammatory drugs acetylsalicylic acid or simvastatin and infected with T. cruzi. Parasitic infection produces differential expression of a set of genes in HUVECs treated with benznidazole alone or a combination with simvastatin or acetylsalicylic acid. The differentially expressed genes were involved in inflammation, adhesion, cardiac function, and remodeling. Notch1 and high mobility group B1 were genes of interest in this analysis due to their importance in placental development, cardiac development, and inflammation. Quantitative polymerase chain reaction confirmation of these two genes indicated that both are upregulated in the presence of benznidazole.


Subject(s)
Aspirin/pharmacology , Gene Expression/drug effects , HMGB1 Protein/metabolism , Human Umbilical Vein Endothelial Cells/parasitology , Nitroimidazoles/pharmacology , Receptor, Notch1/metabolism , Simvastatin/pharmacology , Cells, Cultured , Chagas Disease/drug therapy , Humans , Trypanosoma cruzi
8.
Future Med Chem ; 11(10): 1137-1155, 2019 05.
Article in English | MEDLINE | ID: mdl-31280672

ABSTRACT

Aim: To study a new series of [1,2,3]triazolo[1,5-α]pyridine derivatives as trypanocidal agents because current antichagasic pharmacologic therapy is only partially effective. Materials & methods: The effect of the series upon Trypanosoma cruzi epimastigotes and murine macrophages viability, cell cycle, cell death and on the metabolites of the sterol biosynthesis pathway was measured; also, docking in 14α-demethylase was analyzed. Results: Compound 16 inhibits 14α-demethylase producing an imbalance in the cholesterol/ergosterol synthesis pathway, as suggested by a metabolic control and theoretical docking analysis. Consequently, it prevented cell proliferation, stopping the cellular cycle at the G2/M phase, inducing cell death. Conclusion: Although the exact cell death mechanism remained elusive, this series can be used for the further rational design of novel antiparasitic molecules.


Subject(s)
Pyridines/pharmacology , Sterols/metabolism , Triazoles/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Biosynthetic Pathways/drug effects , Cell Cycle/drug effects , Chagas Disease/drug therapy , Humans , Mice , Pyridines/chemistry , RAW 264.7 Cells , Triazoles/chemistry , Trypanocidal Agents/chemistry , Trypanosoma cruzi/metabolism
9.
Toxicol Appl Pharmacol ; 309: 2-14, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27554043

ABSTRACT

Mitochondrion is an accepted molecular target in cancer treatment since it exhibits a higher transmembrane potential in cancer cells, making it susceptible to be targeted by lipophilic-delocalized cations of triphenylphosphonium (TPP(+)). Thus, we evaluated five TPP(+)-linked decyl polyhydroxybenzoates as potential cytotoxic agents in several human breast cancer cell lines that differ in estrogen receptor and HER2/neu expression, and in metabolic profile. Results showed that all cell lines tested were sensitive to the cytotoxic action of these compounds. The mechanism underlying the cytotoxicity would be triggered by their weak uncoupling effect on the oxidative phosphorylation system, while having a wider and safer therapeutic range than other uncouplers and a significant lowering in transmembrane potential. Noteworthy, while the TPP(+)-derivatives alone led to almost negligible losses of ATP, when these were added in the presence of an AMP-activated protein kinase inhibitor, the levels of ATP fell greatly. Overall, data presented suggest that decyl polyhydroxybenzoates-TPP(+) and its derivatives warrant future investigation as potential anti-tumor agents.


Subject(s)
Breast Neoplasms/pathology , Hydroxybenzoates/pharmacology , Mitochondria/drug effects , Organophosphorus Compounds/chemistry , Adenosine Triphosphate/metabolism , Apoptosis/drug effects , Breast Neoplasms/metabolism , Breast Neoplasms/physiopathology , Cell Line, Tumor , Cell Movement/drug effects , Disease Progression , Female , Humans , Hydroxybenzoates/chemistry , Inhibitory Concentration 50 , Membrane Potential, Mitochondrial/drug effects , Mitochondria/physiology , Oxygen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...