Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Glia ; 68(7): 1410-1420, 2020 07.
Article in English | MEDLINE | ID: mdl-32017258

ABSTRACT

The major constituents of the myelin sheath are lipids, which are made up of fatty acids (FAs). The hydrophilic environment inside the cells requires FAs to be bound to proteins, preventing their aggregation. Fatty acid binding proteins (FABPs) are one class of proteins known to bind FAs in a cell. Given the crucial role of FAs for myelin sheath formation we investigated the role of FABP7, the major isoform expressed in oligodendrocyte progenitor cells (OPCs), in developmental myelination and remyelination. Here, we show that the knockdown of Fabp7 resulted in a reduction of OPC differentiation in vitro. Consistent with this result, a delay in developmental myelination was observed in Fabp7 knockout animals. This delay was transient with full myelination being established before adulthood. FABP7 was dispensable for remyelination, as the knockout of Fapb7 did not alter remyelination efficiency in a focal demyelination model. In summary, while FABP7 is important in OPC differentiation in vitro, its function is not crucial for myelination and remyelination in vivo.


Subject(s)
Demyelinating Diseases/metabolism , Myelin Sheath/metabolism , Oligodendrocyte Precursor Cells/metabolism , Oligodendroglia/metabolism , Remyelination/physiology , Animals , Cell Differentiation/physiology , Fatty Acid-Binding Proteins/metabolism , Stem Cells/metabolism
3.
Proc Natl Acad Sci U S A ; 116(50): 25311-25321, 2019 12 10.
Article in English | MEDLINE | ID: mdl-31740610

ABSTRACT

The microbiota is now recognized as a key influence on the host immune response in the central nervous system (CNS). As such, there has been some progress toward therapies that modulate the microbiota with the aim of limiting immune-mediated demyelination, as occurs in multiple sclerosis. However, remyelination-the regeneration of myelin sheaths-also depends upon an immune response, and the effects that such interventions might have on remyelination have not yet been explored. Here, we show that the inflammatory response during CNS remyelination in mice is modulated by antibiotic or probiotic treatment, as well as in germ-free mice. We also explore the effect of these changes on oligodendrocyte progenitor cell differentiation, which is inhibited by antibiotics but unaffected by our other interventions. These results reveal that high combined doses of oral antibiotics impair oligodendrocyte progenitor cell responses during remyelination and further our understanding of how mammalian regeneration relates to the microbiota.


Subject(s)
Central Nervous System/physiopathology , Gastrointestinal Microbiome , Multiple Sclerosis/immunology , Multiple Sclerosis/microbiology , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/adverse effects , Cell Differentiation/drug effects , Central Nervous System/drug effects , Central Nervous System/immunology , Female , Gastrointestinal Microbiome/drug effects , Humans , Male , Mice , Mice, Inbred C57BL , Multiple Sclerosis/drug therapy , Multiple Sclerosis/physiopathology , Oligodendroglia/cytology , Oligodendroglia/drug effects , Probiotics/administration & dosage , Remyelination/drug effects , Stem Cells/cytology , Stem Cells/drug effects
4.
Front Cell Neurosci ; 13: 85, 2019.
Article in English | MEDLINE | ID: mdl-30971893

ABSTRACT

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). Upon demyelination, oligodendrocyte progenitor cells (OPCs) are activated and they proliferate, migrate and differentiate into myelin-producing oligodendrocytes. Besides OPCs, neural stem cells (NSCs) may respond to demyelination and generate oligodendrocytes. We have recently shown that CNS-resident pericytes (PCs) respond to demyelination, proliferate and secrete Laminin alpha2 (Lama2) that, in turn, enhances OPC differentiation. Here, we aimed to evaluate whether PCs influence the fate choice of NSCs in vitro, towards the production of new myelin-producing cells. Indeed, upon exposure to conditioned medium derived from PCs (PC-CM), the majority of NSCs gave rise to GalC- and myelin basic protein (MBP)-expressing oligodendrocytes at the expense of the generation of GFAP-positive astrocytes. Consistent with these findings, PC-CM induces an increase in the expression of the oligodendrocyte fate determinant Olig2, while the expression level of the astrocyte determinant ID2 is decreased. Finally, pre-incubation of PC-CM with an anti-Lama2 antibody prevented the generation of oligodendrocytes. Our findings indicate that PCs-derived Lama2 instructs NSCs to an oligodendrocyte fate choice favoring the generation of myelin-producing cells at the expense of astrocytes in vitro. Further studies aiming to reveal the role of PCs during remyelination may pave the way for the development of new therapies for the treatment of MS.

SELECTION OF CITATIONS
SEARCH DETAIL
...