Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
J Virol ; 98(5): e0036324, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38661384

ABSTRACT

HIV-1 has a broad range of nuanced interactions with the immune system, and the incorporation of cellular proteins by nascent virions continues to redefine our understanding of the virus-host relationship. Proteins located at the sites of viral egress can be selectively incorporated into the HIV-1 envelope, imparting new functions and phenotypes onto virions, and impacting viral spread and disease. Using virion capture assays and western blot, we show that HIV-1 can incorporate the myeloid antigen CD14 into its viral envelope. Virion-incorporated CD14 remained biologically active and able to bind its natural ligand, bacterial lipopolysaccharide (LPS), as demonstrated by flow virometry and immunoprecipitation assays. Using a Toll-like receptor 4 (TLR4) reporter cell line, we also demonstrated that virions with bound LPS can trigger TLR4 signaling to activate transcription factors that regulate inflammatory gene expression. Complementary assays with THP-1 monocytes demonstrated enhanced secretion of inflammatory cytokines like tumor necrosis factor alpha (TNF-α) and the C-C chemokine ligand 5 (CCL5), when exposed to LPS-loaded virus. These data highlight a new type of interplay between HIV-1 and the myeloid cell compartment, a previously well-established cellular contributor to HIV-1 pathogenesis and inflammation. Persistent gut inflammation is a hallmark of chronic HIV-1 infection, and contributing to this effect is the translocation of microbes across the gut epithelium. Our data herein provide proof of principle that virion-incorporated CD14 could be a novel mechanism through which HIV-1 can drive chronic inflammation, facilitated by HIV-1 particles binding bacterial LPS and initiating inflammatory signaling in TLR4-expressing cells.IMPORTANCEHIV-1 establishes a lifelong infection accompanied by numerous immunological changes. Inflammation of the gut epithelia, exacerbated by the loss of mucosal T cells and cytokine dysregulation, persists during HIV-1 infection. Feeding back into this loop of inflammation is the translocation of intestinal microbes across the gut epithelia, resulting in the systemic dissemination of bacterial antigens, like lipopolysaccharide (LPS). Our group previously demonstrated that the LPS receptor, CD14, can be readily incorporated by HIV-1 particles, supporting previous clinical observations of viruses derived from patient plasma. We now show that CD14 can be incorporated by several primary HIV-1 isolates and that this virion-incorporated CD14 can remain functional, enabling HIV-1 to bind to LPS. This subsequently allowed CD14+ virions to transfer LPS to monocytic cells, eliciting pro-inflammatory signaling and cytokine secretion. We posit here that virion-incorporated CD14 is a potential contributor to the dysregulated immune responses present in the setting of HIV-1 infection.


Subject(s)
HIV Infections , HIV-1 , Lipopolysaccharide Receptors , Lipopolysaccharides , Virion , Humans , Chemokine CCL5/metabolism , HIV Infections/virology , HIV Infections/immunology , HIV Infections/metabolism , HIV-1/immunology , HIV-1/physiology , Lipopolysaccharide Receptors/metabolism , Lipopolysaccharides/metabolism , Monocytes/metabolism , Monocytes/immunology , Monocytes/virology , Signal Transduction , THP-1 Cells , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism , Virion/metabolism
2.
Curr Hematol Malig Rep ; 19(3): 93-103, 2024 06.
Article in English | MEDLINE | ID: mdl-38451372

ABSTRACT

PURPOSE OF REVIEW: T-cell lymphomas (TCLs) are a group of rare subtypes of non-Hodgkin lymphoma derived from mature T-lymphocytes. Recent updates in lymphoma classification based on the cell-of-origin pathogenesis have shed new light on TCL epidemiology and outcomes. Contemporary regional consortia and international studies, including those conducted recently in Asia and South America, have provided an updated delineation of the major subtypes across various global regions. RECENT FINDINGS: Peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS), remains the most common subtype globally except in Asia, where extra-nodal NK-T cell lymphoma (ENKTL) has emerged as the most prevalent. Angioimmunoblastic T-cell lymphoma (AITL) is the second most common subtype globally except in South America where its incidence falls behind adult T-cell leukemia/lymphoma (ATLL) and ENKTL. ALK-negative anaplastic large cell lymphoma (ALCL) has been recognized as the second most common subtype in some parts of South America. Studies on the newly classified breast implant-associated ALCL (BIA-ALCL) are beginning to reveal its distribution and risk factors. Deciphering the epidemiology of TCLs is a challenging endeavor due to the rarity of these entities and ongoing refinement in classification. Collaborative efforts on prospective registries based on the most current WHO classifications will help capture the true epidemiology of TCL subtypes to better focus resources for diagnostic, prognostic, and therapeutic efforts.


Subject(s)
Lymphoma, T-Cell , Humans , Lymphoma, T-Cell/epidemiology , Lymphoma, T-Cell/diagnosis , Lymphoma, T-Cell/therapy , Lymphoma, T-Cell/pathology , Incidence , Lymphoma, T-Cell, Peripheral/epidemiology , Lymphoma, T-Cell, Peripheral/therapy , Lymphoma, T-Cell, Peripheral/diagnosis
3.
Sci Rep ; 13(1): 23025, 2023 12 27.
Article in English | MEDLINE | ID: mdl-38155248

ABSTRACT

While numerous cellular proteins in the HIV envelope are known to alter virus infection, methodology to rapidly phenotype the virion surface in a high throughput, single virion manner is lacking. Thus, many human proteins may exist on the virion surface that remain undescribed. Herein, we developed a novel flow virometry screening assay to discover new proteins on the surface of HIV particles. By screening a CD4+ T cell line and its progeny virions, along with four HIV isolates produced in primary cells, we discovered 59 new candidate proteins in the HIV envelope that were consistently detected across diverse HIV isolates. Among these discoveries, CD38, CD97, and CD278 were consistently present at high levels on virions when using orthogonal techniques to corroborate flow virometry results. This study yields new discoveries about virus biology and demonstrates the utility and feasibility of a novel flow virometry assay to phenotype individual virions.


Subject(s)
HIV Infections , Viruses , Humans , Virion/genetics , Cell Line , HIV Infections/metabolism
4.
Retrovirology ; 19(1): 9, 2022 05 21.
Article in English | MEDLINE | ID: mdl-35597982

ABSTRACT

BACKGROUND: P-selectin glycoprotein ligand-1 (PSGL-1/CD162) has been studied extensively for its role in mediating leukocyte rolling through interactions with its cognate receptor, P-selectin. Recently, PSGL-1 was identified as a novel HIV-1 host restriction factor, particularly when expressed at high levels in the HIV envelope. Importantly, while the potent antiviral activity of PSGL-1 has been clearly demonstrated in various complementary model systems, the breadth of PSGL-1 incorporation across genetically diverse viral isolates and clinical isolates has yet to be described. Additionally, the biological activity of virion-incorporated PSGL-1 has also yet to be shown. RESULTS: Herein we assessed the levels of PSGL-1 on viruses produced through transfection with various amounts of PSGL-1 plasmid DNA (0-250 ng), compared to levels of PSGL-1 on viruses produced through infection of T cell lines and primary PBMC. We found that very low levels of PSGL-1 plasmid DNA (< 2.5 ng/well) were necessary to generate virus models that could closely mirror the phenotype of viruses produced via infection of T cells and PBMC. Unique to this study, we show that PSGL-1 is incorporated in a broad range of HIV-1 and SIV isolates and that virions with incorporated PSGL-1 are detectable in plasma from viremic HIV-1-infected individuals, corroborating the relevance of PSGL-1 in natural infection. Additionally, we show that PSGL-1 on viruses can bind its cognate selectin receptors, P-, E-, and L-selectins. Finally, we show viruses with endogenous levels of PSGL-1 can be captured by P-selectin and transferred to HIV-permissive bystander cells, highlighting a novel role for PSGL-1 in HIV-1 infection. Notably, viruses which contained high levels of PSGL-1 were noninfectious in our hands, in line with previous findings reporting the potent antiviral activity of PSGL-1. CONCLUSIONS: Our results indicate that levels of PSGL-1 incorporation into virions can vary widely among model systems tested, and that careful tailoring of plasmid levels is required to recapitulate physiological systems when using pseudovirus models. Taken together, our data suggest that PSGL-1 may play diverse roles in the physiology of HIV-1 infection, particularly due to the functionally active state of PSGL-1 on virion surfaces and the breadth of PSGL-1 incorporation among a wide range of viral isolates.


Subject(s)
HIV Infections , HIV-1 , P-Selectin , Antiviral Agents/metabolism , DNA/metabolism , HIV-1/genetics , HIV-1/metabolism , Humans , Leukocytes, Mononuclear , Membrane Glycoproteins , P-Selectin/metabolism
5.
Virol J ; 19(1): 29, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35144624

ABSTRACT

Ultraviolet (UV) light has previously been established as useful method of disinfection, with demonstrated efficacy to inactivate a broad range of microorganisms. The advent of ultraviolet light-emitting diodes provides advantages in ease of disinfection, in that there can be delivery of germicidal UV with the same light unit that delivers standard white light to illuminate a room. Herein we demonstrate the efficacy and feasibility of ultraviolet light-emitting diodes as a means of decontamination by inactivating two distinct virus models, human coronavirus 229E and human immunodeficiency virus. Importantly, the same dose of ultraviolet light that inactivated human viruses also elicited complete inactivation of ultraviolet-resistant bacterial spores (Bacillus pumilus), a gold standard for demonstrating ultraviolet-mediated disinfection. This work demonstrates that seconds of ultraviolet light-emitting diodes (UV-LED) exposure can inactivate viruses and bacteria, highlighting that UV-LED could be a useful and practical tool for broad sanitization of public spaces.


Subject(s)
Coronavirus 229E, Human , Disinfection , HIV-1 , Ultraviolet Rays , Virus Inactivation/radiation effects , Coronavirus 229E, Human/radiation effects , Disinfection/methods , HIV-1/radiation effects , Humans
6.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35064083

ABSTRACT

Deep mining of B cell repertoires of HIV-1-infected individuals has resulted in the isolation of dozens of HIV-1 broadly neutralizing antibodies (bNAbs). Yet, it remains uncertain whether any such bNAbs alone are sufficiently broad and potent to deploy therapeutically. Here, we engineered HIV-1 bNAbs for their combination on a single multispecific and avid molecule via direct genetic fusion of their Fab fragments to the human apoferritin light chain. The resulting molecule demonstrated a remarkable median IC50 value of 0.0009 µg/mL and 100% neutralization coverage of a broad HIV-1 pseudovirus panel (118 isolates) at a 4 µg/mL cutoff-a 32-fold enhancement in viral neutralization potency compared to a mixture of the corresponding HIV-1 bNAbs. Importantly, Fc incorporation on the molecule and engineering to modulate Fc receptor binding resulted in IgG-like bioavailability in vivo. This robust plug-and-play antibody design is relevant against indications where multispecificity and avidity are leveraged simultaneously to mediate optimal biological activity.


Subject(s)
Antibodies, Neutralizing/immunology , Antibody Affinity/immunology , HIV Antibodies/immunology , Neutralization Tests , Protein Engineering , Antibodies, Neutralizing/chemistry , Broadly Neutralizing Antibodies/chemistry , Broadly Neutralizing Antibodies/immunology , Epitopes/chemistry , Epitopes/immunology , HIV Antibodies/chemistry , HIV Antibodies/genetics , HIV-1/immunology , Humans , Models, Molecular , Neutralization Tests/methods , Protein Conformation , Protein Engineering/methods , Structure-Activity Relationship
7.
J Leukoc Biol ; 111(3): 573-583, 2022 03.
Article in English | MEDLINE | ID: mdl-34114669

ABSTRACT

Monocytes are a subset of circulating peripheral blood mononuclear cells with diverse roles in immunity, including sentinel roles in cytokine secretion. Conventionally, cytokines require an inductive stimulus for their expression and secretion, resulting in a time lag from the time of stimulation to when the proteins are packaged and secreted. Because cytokines are the main communicators in the immune system, their temporal expression is a key factor in coordinating responses to efficiently resolve infection. Herein, we identify that circulating human monocytes contain preformed cytokines that are stored intracellularly, in both resting and activated states. Having preformed cytokines bypasses the time lag associated with de novo synthesis, allowing monocytes to secrete immune mediators immediately upon activation or sensing of microbe-associated molecular patterns. We demonstrate here that, out of several cytokines evaluated, human monocytes contain a previously undescribed reservoir of the preformed chemokine CCL5. Furthermore, we showed that CCL5 could be secreted from monocytes treated with the protein synthesis inhibitor (cycloheximide) and Golgi blocker (brefeldin A). We examined the possibility for uptake of extracellular CCL5 from platelet aggregates and observed no significant levels of platelet binding to our enriched monocyte preparations, indicating that the source of preformed CCL5 was not from platelets. Preformed CCL5 was observed to be distributed throughout the cytoplasm and partially colocalized with CD63+ and Rab11A+ membranes, implicating endosomal compartments in the intracellular storage and trafficking of CCL5.


Subject(s)
Chemokine CCL5 , Leukocytes, Mononuclear , Monocytes , Chemokine CCL5/metabolism , Cytokines/metabolism , Humans , Leukocytes, Mononuclear/metabolism , Monocytes/metabolism , Protein Biosynthesis
8.
Cancer Res ; 81(19): 5021-5032, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34183355

ABSTRACT

The CD200-CD200R immunoregulatory signaling axis plays an etiologic role in the survival and spread of numerous cancers, primarily through suppression of antitumor immune surveillance. Our previous work outlined a prometastatic role for the CD200-CD200R axis in cutaneous squamous cell carcinoma (cSCC) that is independent of direct T-cell suppression but modulates the function of infiltrating myeloid cells. To identify effectors of the CD200-CD200R axis important for cSCC metastasis, we conducted RNA sequencing profiling of infiltrating CD11B+Cd200R+ cells isolated from CD200+ versus CD200-null cSCCs and identified the cysteine protease cathepsin K (Ctsk) to be highly upregulated in CD200+ cSCCs. CD11B+Cd200R+ cells expressed phenotypic markers associated with myeloid-derived suppressor cell-like cells and tumor-associated macrophages and were the primary source of Ctsk expression in cSCC. A Cd200R+ myeloid cell-cSCC coculture system showed that induction of Ctsk was dependent on engagement of the CD200-CD200R axis, indicating that Ctsk is a target gene of this pathway in the cSCC tumor microenvironment. Inhibition of Ctsk, but not matrix metalloproteinases, significantly blocked cSCC cell migration in vitro. Finally, targeted CD200 disruption in tumor cells and Ctsk pharmacologic inhibition significantly reduced cSCC metastasis in vivo. Collectively, these findings support the conclusion that CD200 stimulates cSCC invasion and metastasis via induction of Ctsk in CD200R+ infiltrating myeloid cells. SIGNIFICANCE: These findings highlight the relationship between CD200-CD200R and cathepsin K in cutaneous squamous cell carcinoma metastasis and suggest that either of these components may serve as a viable therapeutic target in this disease.


Subject(s)
Antigens, CD/metabolism , Carcinoma, Squamous Cell/metabolism , Cathepsin K/genetics , Gene Expression Regulation, Neoplastic , Membrane Glycoproteins/metabolism , Animals , Antigens, CD/genetics , Carcinoma, Squamous Cell/etiology , Carcinoma, Squamous Cell/pathology , Cathepsin K/metabolism , Disease Models, Animal , Fluorescent Antibody Technique , Genotype , Humans , Immunophenotyping , Membrane Glycoproteins/genetics , Mice , Mice, Knockout , Mutation , Myeloid-Derived Suppressor Cells/metabolism , Tumor Microenvironment/genetics
9.
Oncologist ; 26(9): 727-e1488, 2021 09.
Article in English | MEDLINE | ID: mdl-33851477

ABSTRACT

LESSONS LEARNED: Staphylococcus aureus infection in cutaneous T-cell lymphoma (CTCL) is thought to contribute to disease progression; thus, adjunctive treatment with antibiotics warrants further investigation. This trial of antibiotic therapy followed by imiquimod in early stage CTCL was not completed because of difficulties with patient accrual. BACKGROUND: Cutaneous T-cell lymphoma (CTCL), a form of non-Hodgkin lymphoma, is a heterogeneous group of malignancies of mature memory T lymphocytes. It has an annual age-adjusted incidence of 7.5 per million persons in the U.S. population [1]. The etiology of CTCL is unknown, but epidemiological studies have reported potential associations with environmental and occupational factors, including Agent Orange exposure in Vietnam Veterans [2]. Both topical and systemic therapies have been identified as effective in CTCL; the choice of treatment is dependent on disease stage, with the overall goal of improving symptoms given the chronic and recurrent nature of the disease. Several studies have suggested that CTCL is exacerbated by the presence of Staphylococcus aureus in the skin and can be ameliorated by treatment with antibiotics [3]. METHODS: Our study was designed to assess the effects of antibiotics and imiquimod on early stage CTCL. Patients between the ages of 30-89 years with stage I and II CTCL were eligible for enrollment. They could not be receiving concurrent therapy, and the study design included a 14-day washout period after discontinuation of CTCL therapy. The washout period was followed by doxycycline 100 mg p.o. b.i.d. for 14 days and then two packets (250 mg per packet) of imiquimod 5% cream topically to the most clinically active lesions 3 days a week (Monday, Wednesday, and Friday) for 28 days. Skin lesions were measured using the modified Severity Weighted Assessment Tool (mSWAT). RESULTS: Our study enrolled only two patients with early stage CTCL because of difficulty locating patients with active CTCL able to discontinue all therapy. The two enrolled patients completed all therapy. One patient had a complete response after imiquimod, whereas the other patient had stable disease. CONCLUSION: Antibiotics and imiquimod have reported activity as single agents in CTCL; we did not enroll enough patients to assess value in the sequence of antibiotic therapy followed by imiquimod.


Subject(s)
Lymphoma, T-Cell, Cutaneous , Skin Neoplasms , Veterans , Adult , Aged , Aged, 80 and over , Agent Orange , Anti-Bacterial Agents , Humans , Imiquimod , Lymphoma, T-Cell, Cutaneous/chemically induced , Lymphoma, T-Cell, Cutaneous/drug therapy , Lymphoma, T-Cell, Cutaneous/epidemiology , Middle Aged , Skin Neoplasms/drug therapy , Skin Neoplasms/epidemiology
10.
mBio ; 12(2)2021 03 30.
Article in English | MEDLINE | ID: mdl-33785631

ABSTRACT

The human immunodeficiency virus type 1 (HIV-1) envelope trimer maintains a closed, metastable configuration to protect vulnerable epitopes from neutralizing antibodies. Here, we identify key hydrophobic constraints at the trimer apex that function as global stabilizers of the HIV-1 envelope spike configuration. Mutation of individual residues within four hydrophobic clusters that fasten together the V1V2, V3, and C4 domains at the apex of gp120 dramatically increases HIV-1 sensitivity to weak and restricted neutralizing antibodies targeting epitopes that are largely concealed in the prefusion Env spike, consistent with the adoption of a partially open trimer configuration. Conversely, the same mutations decrease the sensitivity to broad and potent neutralizing antibodies that preferentially recognize the closed trimer. Sera from chronically HIV-infected patients neutralize open mutants with enhanced potency, compared to the wild-type virus, suggesting that a large fraction of host-generated antibodies target concealed epitopes. The identification of structural constraints that maintain the HIV-1 envelope in an antibody-protected state may inform the design of a protective vaccine.IMPORTANCE Elucidating the structure and function of the HIV-1 envelope proteins is critical for the design of an effective vaccine. Despite the availability of many high-resolution structures, key functional correlates in the envelope trimer remain undefined. We utilized a combination of structural analysis, in silico energy calculation, mutagenesis, and neutralization profiling to dissect the functional anatomy of the trimer apex, which acts as a global regulator of the HIV-1 spike conformation. We identify four hydrophobic clusters that stabilize the spike in a tightly closed configuration and, thereby, play a critical role in protecting it from the reach of neutralizing antibodies.


Subject(s)
HIV-1/genetics , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/immunology , Amino Acid Motifs , Amino Acid Sequence , Antibodies, Neutralizing/immunology , HIV Antibodies , HIV Infections/virology , HIV-1/chemistry , HIV-1/immunology , Humans , Hydrophobic and Hydrophilic Interactions , Mutation , env Gene Products, Human Immunodeficiency Virus/genetics
11.
JAMA Dermatol ; 157(1): 90-95, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33112366

ABSTRACT

Importance: Sézary syndrome (SS) is an advanced form of cutaneous T-cell lymphoma with few long-term remissions observed. Objective: To profile 3 patients with SS who have experienced long-term remission following the addition of low-dose total skin electron beam therapy (TSEBT) to systemic regimens of extracorporeal photopheresis, bexarotene, and interferon-γ. Design, Setting, and Participants: This is a retrospective case series with additional investigations of patient-donated samples to assess therapeutic response. The study was conducted at the University of Pennsylvania Cutaneous Lymphoma Clinic and follows 3 patients with stage IVA1 CD4+ SS who presented to the clinic between November 1, 2009, and November 1, 2017, and who had a history of SS that was refractory to multimodality systemic therapy prior to receiving low-dose TSEBT. Interventions: Patients were treated in a multimodality fashion with combined extracorporeal photopheresis, bexarotene, interferon-γ, and low-dose TSEBT. Main Outcomes and Measures: To characterize treatment responses in these patients, the extent of skin disease was measured with the modified severity weighted assessment tool. Blood disease was measured with flow cytometric assessments of Sézary cell count, CD4:CD8 ratio, and high throughput sequencing of the T-cell receptors. To assess for restoration of immune function, we measured markers of immune exhaustion, including PD-1 (programmed cell death 1), TIGIT (T-cell immunoreceptor with immunoglobulin and ITIM domains), CTLA4 (cytotoxic T-lymphocyte-associated protein 4), TOX (thymocyte selection-associated high mobility group box protein), and Foxp3 (forkhead box P3) on circulating CD4 and CD8 T cells, along with production capacity of interferon-γ by lymphocytes following activation stimuli. Results: Following administration of low-dose TSEBT and maintenance of the other therapies, remissions ranged from 24 to 30 months, with complete responses in 2 patients ongoing. Markers of immune exhaustion including PD-1, TIGIT, CTLA4, TOX, and Foxp3 were significantly reduced from baseline following TSEBT, along with enhanced production capacity of interferon-γ by lymphocytes following activation stimuli. High throughput sequencing demonstrated near-complete eradication of the circulating clone among 2 of 3 patients with stable levels in 1. Conclusions and Relevance: We describe 3 patients who achieved long-term clinical and molecular remissions following low-dose TSEBT as part of a multimodality regimen for treatment of SS. As long-term remissions in SS are uncommon, this approach demonstrates promise, and clinical trials should be considered.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Electrons/therapeutic use , Immunotherapy/methods , Photopheresis , Sezary Syndrome/therapy , Skin Neoplasms/therapy , Aged , Aged, 80 and over , Bexarotene/therapeutic use , Biomarkers, Tumor/blood , Biomarkers, Tumor/immunology , Combined Modality Therapy/methods , Humans , Interferon-gamma/therapeutic use , Male , Middle Aged , Radiotherapy Dosage , Retrospective Studies , Sezary Syndrome/blood , Sezary Syndrome/diagnosis , Sezary Syndrome/immunology , Skin Neoplasms/blood , Skin Neoplasms/diagnosis , Skin Neoplasms/immunology , Treatment Outcome
12.
Viruses ; 12(11)2020 11 12.
Article in English | MEDLINE | ID: mdl-33198254

ABSTRACT

The HIV-1 glycoprotein spike (gp120) is typically the first viral antigen that cells encounter before initiating immune responses, and is often the sole target in vaccine designs. Thus, characterizing the presence of cellular antigens on the surfaces of HIV particles may help identify new antiviral targets or impact targeting of gp120. Despite the importance of characterizing proteins on the virion surface, current techniques available for this purpose do not support high-throughput analysis of viruses, and typically only offer a semi-quantitative assessment of virus-associated proteins. Traditional bulk techniques often assess averages of viral preparations, which may mask subtle but important differences in viral subsets. On the other hand, microscopy techniques, which provide detail on individual virions, are difficult to use in a high-throughput manner and have low levels of sensitivity for antigen detection. Flow cytometry is a technique that traditionally has been used for rapid, high-sensitivity characterization of single cells, with limited use in detecting viruses, since the small size of viral particles hinders their detection. Herein, we report the detection and surface antigen characterization of HIV-1 pseudovirus particles by light scattering and fluorescence with flow cytometry, termed flow virometry for its specific application to viruses. We quantified three cellular proteins (integrin α4ß7, CD14, and CD162/PSGL-1) in the viral envelope by directly staining virion-containing cell supernatants without the requirement of additional processing steps to distinguish virus particles or specific virus purification techniques. We also show that two antigens can be simultaneously detected on the surface of individual HIV virions, probing for the tetraspanin marker, CD81, in addition to α4ß7, CD14, and CD162/PSGL-1. This study demonstrates new advances in calibrated flow virometry as a tool to provide sensitive, high-throughput characterization of the viral envelope in a more efficient, quantitative manner than previously reported techniques.


Subject(s)
Flow Cytometry , Genetic Engineering , HIV-1/metabolism , Host-Pathogen Interactions , Viral Load , Virion , Biomarkers , Flow Cytometry/methods , HIV-1/genetics , Humans , Reproducibility of Results , Viral Load/methods , Virion/genetics , Virion/metabolism
13.
Cutis ; 106(3): 131-132, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33104116

ABSTRACT

Cutaneous T-cell lymphoma (CTCL) represents a diagnostic challenge because of its large symptomatic overlap with other common skin conditions such as atopic dermatitis (AD) and psoriasis. Dupilumab has offered promising results in AD treatment; however, concerns exist that its use may exacerbate undiagnosed CTCL. We present a patient with CTCL and concomitant AD who experienced improvement in both CTCL blood involvement and AD following the addition of dupilumab therapy.


Subject(s)
Dermatitis, Atopic , Lymphoma, T-Cell, Cutaneous , Skin Neoplasms , Antibodies, Monoclonal, Humanized/therapeutic use , Dermatitis, Atopic/complications , Dermatitis, Atopic/drug therapy , Humans , Lymphoma, T-Cell, Cutaneous/complications , Lymphoma, T-Cell, Cutaneous/diagnosis , Lymphoma, T-Cell, Cutaneous/drug therapy , Skin Neoplasms/drug therapy
14.
Acta Derm Venereol ; 100(13): adv00187, 2020 06 18.
Article in English | MEDLINE | ID: mdl-32128597

ABSTRACT

Folliculotropic mycosis fungoides is a variant of cutaneous T-cell lymphoma characterized as having a folliculocentric infiltrate of malignant T cells along with a worse prognosis in comparison to the epidermotropic variants. Patients with advanced forms of folliculotropic mycosis fungoides are often poorly responsive to both skin-directed as well as to systemic therapies. We report here a high response rate using a novel therapeutic regimen combining interferon gamma, isotretinoin in low dose and topical carmustine, and in some cases concomitant skin-directed therapies, among 6 consecutive patients with refractory folliculotropic mycosis fungoides with stages IB through IIIB who had previously failed both topical and systemic therapies. The potential mechanisms of this multimodality approach are discussed.


Subject(s)
Lymphoma, T-Cell, Cutaneous , Mycosis Fungoides , Skin Neoplasms , Humans , Mycosis Fungoides/drug therapy , Pilot Projects , Skin , Skin Neoplasms/drug therapy
15.
Viruses ; 11(1)2019 01 20.
Article in English | MEDLINE | ID: mdl-30669528

ABSTRACT

The incorporation of biologically active host proteins into HIV-1 is a well-established phenomenon, particularly due to the budding mechanism of viral egress in which viruses acquire their external lipid membrane directly from the host cell. While this mechanism might seemingly imply that host protein incorporation is a passive uptake of all cellular antigens associated with the plasma membrane at the site of budding, this is not the case. Herein, we review the evidence indicating that host protein incorporation can be a selective and conserved process. We discuss how HIV-1 virions displaying host proteins on their surface can exhibit a myriad of altered phenotypes, with notable impacts on infectivity, homing, neutralization, and pathogenesis. This review describes the canonical and emerging methods to detect host protein incorporation, highlights the well-established host proteins that have been identified on HIV-1 virions, and reflects on the role of these incorporated proteins in viral pathogenesis and therapeutic targeting. Despite many advances in HIV treatment and prevention, there remains a global effort to develop increasingly effective anti-HIV therapies. Given the broad range of biologically active host proteins acquired on the surface of HIV-1, additional studies on the mechanisms and impacts of these incorporated host proteins may inform the development of novel treatments and vaccine designs.


Subject(s)
HIV-1/genetics , Host Microbial Interactions , Membrane Proteins/chemistry , env Gene Products, Human Immunodeficiency Virus/chemistry , CD4-Positive T-Lymphocytes/virology , Humans , Integrins/genetics , Macrophages/virology , Membrane Proteins/genetics , Virion/genetics , Virus Release , env Gene Products, Human Immunodeficiency Virus/genetics
16.
mBio ; 9(6)2018 12 11.
Article in English | MEDLINE | ID: mdl-30538178

ABSTRACT

The human immunodeficiency virus type 1 (HIV-1) envelope (Env) trimer evades antibody recognition by adopting a closed prefusion conformation. Here, we show that two conserved tyrosines (Y173, Y177) within the second variable (V2) loop of the gp120 Env glycoprotein are key regulators of the closed, antibody-protected state of the trimer by establishing intramolecular interaction with the base of the third variable (V3) loop. Mutation of Y177 and/or Y173 to phenylalanine or alanine dramatically altered the susceptibility of diverse HIV-1 strains to neutralization, increasing sensitivity to weakly and nonneutralizing antibodies directed against diverse Env regions, consistent with the adoption of an open trimer configuration. Conversely, potent broadly neutralizing antibodies (bNAbs) against different supersites of HIV-1 vulnerability exhibited reduced potency against V2 loop tyrosine mutants, consistent with their preferential targeting of the closed trimer. Mutation of V3 loop residues predicted to interact with the V2 loop tyrosines yielded a similar neutralization phenotype. Sera from chronically HIV-1-infected patients contained very high titers of antibodies capable of neutralizing V2 loop tyrosine mutants but not wild-type viruses, indicating that the bulk of antibodies produced in infected hosts are unable to penetrate the protective shield of the closed trimer. These results identify the tyrosine-mediated V2-V3 loop complex at the trimer apex as a key structural constraint that facilitates HIV-1 evasion from the bulk of host antibodies.IMPORTANCE The extraordinary ability of human immunodeficiency virus type 1 (HIV-1) to evade host immunity represents a major obstacle to the development of a protective vaccine. Thus, elucidating the mechanisms whereby HIV-1 protects its external envelope (Env), which is the sole target of virus-neutralizing antibodies, is an essential step toward vaccine design. We identified a key structural element that maintains the HIV-1 Env trimer in a closed, antibody-resistant conformation. A major role is played by two conserved tyrosines at the apex of the Env spike, whose mutation causes a global opening of the trimer structure, exposing multiple concealed targets for neutralizing antibodies. We also found that HIV-infected individuals produce very large amounts of antibodies that neutralize the open Env form; however, the bulk of these antibodies are unable to penetrate the tight defensive shield of the native virus. This work may help to devise new strategies to overcome the viral defensive mechanisms and facilitate the development of an effective HIV-1 vaccine.


Subject(s)
Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Envelope Protein gp120/immunology , HIV-1/immunology , DNA Mutational Analysis , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/genetics , HIV Infections/immunology , HIV-1/genetics , Humans , Immune Evasion , Neutralization Tests , Protein Structure, Quaternary
17.
Cell Host Microbe ; 23(6): 832-844.e6, 2018 06 13.
Article in English | MEDLINE | ID: mdl-29902444

ABSTRACT

The HIV-1 envelope (Env) spike is a trimer of gp120/gp41 heterodimers that mediates viral entry. Binding to CD4 on the host cell membrane is the first essential step for infection but disrupts the native antigenic state of Env, posing a key obstacle to vaccine development. We locked the HIV-1 Env trimer in a pre-fusion configuration, resulting in impaired CD4 binding and enhanced binding to broadly neutralizing antibodies. This design was achieved via structure-guided introduction of neo-disulfide bonds bridging the gp120 inner and outer domains and was successfully applied to soluble trimers and native gp160 from different HIV-1 clades. Crystallization illustrated the structural basis for CD4-binding impairment. Immunization of rabbits with locked trimers from two different clades elicited neutralizing antibodies against tier-2 viruses with a repaired glycan shield regardless of treatment with a functional CD4 mimic. Thus, interdomain stabilization provides a widely applicable template for the design of Env-based HIV-1 vaccines.


Subject(s)
CD4 Antigens/immunology , CD4 Antigens/metabolism , HIV-1/immunology , Protein Binding/immunology , Protein Domains , Protein Stability , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/immunology , AIDS Vaccines/immunology , Animals , Antibodies, Neutralizing/immunology , Female , HEK293 Cells , HIV Antibodies/immunology , HIV Antigens/chemistry , HIV Antigens/immunology , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/genetics , HIV Envelope Protein gp120/immunology , HIV Envelope Protein gp120/metabolism , HIV Envelope Protein gp160/chemistry , HIV Envelope Protein gp160/immunology , HIV Envelope Protein gp160/metabolism , HIV-1/genetics , HIV-1/pathogenicity , Humans , Immunization , Models, Molecular , Protein Conformation , Protein Domains/immunology , Rabbits , Virus Internalization , env Gene Products, Human Immunodeficiency Virus/genetics
18.
Sci Immunol ; 2(11)2017 May 12.
Article in English | MEDLINE | ID: mdl-28763793

ABSTRACT

The intestinal mucosa is a key anatomical site for HIV-1 replication and CD4+ T cell depletion. Accordingly, in vivo treatment with an antibody to the gut-homing integrin α4ß7 was shown to reduce viral transmission, delay disease progression, and induce persistent virus control in macaques challenged with simian immunodeficiency virus (SIV). We show that integrin α4ß7 is efficiently incorporated into the envelope of HIV-1 virions. Incorporated α4ß7 is functionally active as it binds mucosal addressin cell adhesion molecule-1 (MAdCAM-1), promoting HIV-1 capture by and infection of MAdCAM-expressing cells, which in turn mediate trans-infection of bystander cells. Functional α4ß7 is present in circulating virions from HIV-infected patients and SIV-infected macaques, with peak levels during the early stages of infection. In vivo homing experiments documented selective and specific uptake of α4ß7+ HIV-1 virions by high endothelial venules in the intestinal mucosa. These results extend the paradigm of tissue homing to a retrovirus and are relevant for the pathogenesis, treatment, and prevention of HIV-1 infection.

20.
Mol Pharm ; 14(8): 2681-2689, 2017 08 07.
Article in English | MEDLINE | ID: mdl-28494151

ABSTRACT

HIV/AIDS continues to pose an enormous burden on global health. Current HIV therapeutics include inhibitors that target the enzymes HIV protease, reverse transcriptase, and integrase, along with viral entry inhibitors that block the initial steps of HIV infection by preventing membrane fusion or virus-coreceptor interactions. With regard to the latter, peptides derived from the HIV coreceptor CCR5 were previously shown to modestly inhibit entry of CCR5-tropic HIV strains, with a peptide containing residues 178-191 of the second extracellular loop (peptide 2C) showing the strongest inhibition. Here we use an iterative approach of amino acid scanning at positions shown to be important for binding the HIV envelope, and recombining favorable substitutions to greatly improve the potency of 2C. The most potent candidate peptides gain neutralization breadth and inhibit CXCR4 and CXCR4/CCR5-using viruses, rather than CCR5-tropic strains only. We found that gains in potency in the absence of toxicity were highly dependent on amino acid position and residue type. Using virion capture assays we show that 2C and the new peptides inhibit capture of CD4-bound HIV-1 particles by antibodies whose epitopes are located in or around variable loop 3 (V3) on gp120. Analysis of antibody binding data indicates that interactions between CCR5 ECL2-derived peptides and gp120 are localized around the base and stem of V3 more than the tip. In the absence of a high-resolution structure of gp120 bound to coreceptor CCR5, these findings may facilitate structural studies of CCR5 surrogates, design of peptidomimetics with increased potency, or use as functional probes for further study of HIV-1 gp120-coreceptor interactions.


Subject(s)
Peptides/pharmacology , Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , HIV Envelope Protein gp120/metabolism , HIV Infections/metabolism , HIV-1/drug effects , Humans , Peptides/chemistry , Receptors, CCR5/metabolism , Receptors, CXCR4/metabolism , Viral Proteins/chemistry , Viral Proteins/pharmacology , Virion/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...