Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Biophys J ; 81(1): 371-81, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11423421

ABSTRACT

Sedimentation velocity analysis has been used to examine the base-specific structural conformations and unusual hydrogen bonding patterns of model oligonucleotides. Homo-oligonucleotides composed of 8-28 residues of dA, dT, or dC nucleotides in 100 mM sodium phosphate, pH 7.4, at 20 degrees C behave as extended monomers. Comparison of experimentally determined sedimentation coefficients with theoretical values calculated for assumed helical structures show that dT and dC oligonucleotides are more compact than dA oligonucleotides. For dA oligonucleotides, the average width (1.7 nm), assuming a cylindrical model, is smaller than for control duplex DNA whereas the average rise per base (0.34 nm) is similar to that of B-DNA. For dC and dT oligonucleotides, there is an increase in the average widths (1.8 nm and 2.1 nm, respectively) whereas the average rise per base is smaller (0.28 nm and 0.23 nm, respectively). A significant shape change is observed for oligo dC(28) at lower temperatures (10 degrees C), corresponding to a fourfold decrease in axial ratio. Optical density, circular dichroism, and differential scanning calorimetry data confirm this shape change, attributable from nuclear magnetic resonance analysis to i-motif formation. Sedimentation equilibrium studies of oligo dG(8) and dG(16) reveal extensive self-association and the formation of G-quadruplexes. Continuous distribution analysis of sedimentation velocity data for oligo dG(16) identifies the presence of discrete dimers, tetramers, and dodecamers. These studies distinguish the conformational and colligative properties of the individual bases in DNA and their inherent capacity to promote specific folding pathways.


Subject(s)
DNA/chemistry , Nucleic Acid Conformation , Oligodeoxyribonucleotides/chemistry , Calorimetry, Differential Scanning , Circular Dichroism , Clarithromycin , DNA/metabolism , Hydrogen Bonding , Magnetic Resonance Spectroscopy , Molecular Weight , Oligodeoxyribonucleotides/metabolism , Temperature , Ultracentrifugation
2.
Methods ; 22(3): 219-25, 2000 Nov.
Article in English | MEDLINE | ID: mdl-11071817

ABSTRACT

Phosphorothioated antisense oligodeoxynucleotides (ODNs) that were complementary to various parts of the rat or sheep mRNA encoding angiotensinogen were synthesized by conventional techniques. Their effectiveness as blockers of angiotensinogen synthesis in the brain was tested by bioassay. This involved measuring the effect of centrally administered antisense ODNs on water drinking that occurred in response to intracerebroventricular injection of hog renin. Renin-induced drinking requires brain angiotensinogen for the generation of angiotensin I and then angiotensin II to stimulate thirst. Intracerebroventricular injection of an 18-mer antisense ODN (0.5 microg twice in 24 h) complementary to the 5'-end start codon for rat angiotensinogen mRNA caused a pronounced inhibition of renin-induced drinking. This effect appeared to be specific for this region of the codon because antisense ODNs directed against other regions of rat angiotensinogen mRNA were ineffective, and renin-induced drinking was not inhibited by intracerebroventricular injection of scrambled or mismatched sequences of the effective ODN or by intraperitoneal injection of it. Intracerebroventricular injection of antisense ODN (0.5 microg twice in 24 h) did not inhibit appetite or affect water drinking in response to some other dipsogenic stimuli, thus demonstrating the specificity of its action against renin-induced drinking. By contrast, intracerebroventricular administration of 625 microg of an antisense ODN directed against the corresponding 5'-end start codon region of sheep angiotensinogen mRNA did not inhibit intracerebroventricular renin-induced drinking in sheep. These data show that while intracerebroventricularly administered antisense may be used effectively in rodents, the method is not necessarily applicable in larger mammals.


Subject(s)
Angiotensinogen/antagonists & inhibitors , Angiotensinogen/genetics , Brain/drug effects , Brain/metabolism , Oligodeoxyribonucleotides, Antisense/pharmacology , Angiotensinogen/physiology , Animals , Base Sequence , Drinking/drug effects , Drinking/physiology , Injections, Intraventricular , Male , Oligodeoxyribonucleotides, Antisense/administration & dosage , Oligodeoxyribonucleotides, Antisense/genetics , RNA, Messenger/genetics , Rats , Rats, Sprague-Dawley , Renin/administration & dosage , Sheep , Swine
SELECTION OF CITATIONS
SEARCH DETAIL