Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Horiz ; 11(3): 803-812, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38010915

ABSTRACT

In this work, we demonstrate, for the first time, that coupling together the pyroelectric effect, the photovoltaic effect and the plasmonic effect is a novel method to significantly enhance the performance of self-powered photodetectors in the visible region. Photodetectors based on tri-layered heterojunction of n-Si/p-SnO/n-ZnO through the inclusion of silver (Ag) nanoparticles (NPs) at the SnO/ZnO interface were fabricated. The photo-response of the device, with excitation from a chopped 650 nm wavelength laser, was carefully investigated, and it was shown that the photodetector performance is enhanced the most with the inclusion of spheroidal Ag NPs with ∼70 nm diameter. The Al/Si/SnO/Ag NPs/ZnO/ITO device exhibited an optimum responsivity, detectivity and sensitivity of 210.2 mA W-1, 5.47 × 109 Jones and 15.0 × 104, respectively, together with a rise and fall time of 2.3 and 51.3 µs, respectively, at a laser power density of 317 mW cm-2 and at a chopper frequency of 10 Hz. The present photodetectors are more than twice as responsive as the current best-performing ZnO-based pyro-phototronic photodetectors and they also exhibit other competitive features, such as detectivity, and fall and rise times. Therefore, by exploiting the plasmonic effect of the Ag NPs together with the pyroelectric effect in a ZnO film, and the photovoltaic effect at a Si/SnO junction, all in a single device, photodetectors were developed with state-of-the-art performance for the visible region.

2.
Small ; 19(32): e2300607, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37086105

ABSTRACT

Self-powered photodetectors (PDs) have been recognized as one of the developing trends of next-generation optoelectronic devices. Herein, it is shown that by introducing a thin layer of SnO film between the Si substrate and the ZnO film, the self-powered photodetector Al/Si/SnO/ZnO/ITO exhibits a stable and uniform violet sensing ability with high photoresponsivity and fast response. The SnO layer introduces a built-in electrostatic field to highly enhance the photocurrent by over 1000%. By analyzing energy diagrams of the p-n junction, the underlying physical mechanism of the self-powered violet PDs is carefully illustrated. A high photo-responsivity (R) of 93 mA W-1 accompanied by a detectivity (D*) of 3.1 × 1010 Jones are observed under self-driven conditions, when the device is exposed to 405 nm excitation laser wavelength, with a laser power density of 36 mW cm-2 and at a chopper frequency of 400 Hz. The Si/SnO/ZnO/ITO device shows an enhancement of 3067% in responsivity when compared to the Al/Si/ZnO/ITO. The photodetector holds an ultra-fast response of ≈ 2 µs, which is among the best self-powered photodetectors reported in the literature based on ZnO.

3.
Beilstein J Nanotechnol ; 12: 766-774, 2021.
Article in English | MEDLINE | ID: mdl-34367860

ABSTRACT

Today, silicon solar cells (amorphous films and wafer-based) are a main source of green energy. These cells and their components are produced by employing various technologies. Unfortunately, during the production process, chemicals that are harmful for the environment and for human life are used. For example, hydrofluoric acid is used to texture the top electrode to improve light harvesting. In this work, and also in recent ones, we report a way to obtain 3D textures on the top electrode by using zinc oxide nanorods. The efficiency of a textured solar cell structure is compared with the one obtained for a planar zinc oxide/silicon structure. The present results show the possibility to produce efficient solar cells on a relatively thin 50 µm thick silicon substrate. Solar cells with structured top electrodes were examined by numerous measuring techniques. Scanning electron microscopy revealed a grain-like morphology of the magnesium-doped zinc oxide film. The size of the grains is closely related to the structure of the nanorods. The external quantum efficiency of the cells was measured. The obtained solar cell shows response in a wide spectral range from ultraviolet to infrared. Current-voltage and current-voltage-temperature measurements were performed to evaluate basic photovoltaic parameters. At room temperature, the cells efficiency equals to 9.1% for textured structures and 5.4% for planar structures, respectively. The work, therefore, describes an environmentally friendly technology for PV architecture with surface textures increasing the efficiency of PV cells.

4.
Beilstein J Nanotechnol ; 12: 578-592, 2021.
Article in English | MEDLINE | ID: mdl-34285862

ABSTRACT

In order to effectively utilize the photovoltaic properties of gallium arsenide, its surface/interface needs to be properly prepared. In the experiments described here we examined eight different paths of GaAs surface treatment (cleaning, etching, passivation) which resulted in different external quantum efficiency (EQE) values of the tested photovoltaic (PV) cells. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) examinations were conducted to obtain structural details of the devices. X-ray photoelectron spectroscopy (XPS) with depth profiling was used to examine interface structure and changes in the elemental content and chemical bonds. The photoluminescence (PL) properties and bandgap measurements of the deposited layers were also reported. The highest EQE value was obtained for the samples initially etched with a citric acid-based etchant and, in the last preparation step, either passivated with ammonium sulfide aqueous solution or treated with ammonium hydroxide solution with no final passivation. Subsequent I-V measurements, however, confirmed that from these samples, only the sulfur-passivated ones provided the highest current density. The tested devices were fabricated by using the ALD method.

SELECTION OF CITATIONS
SEARCH DETAIL
...