Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 102(39): 13950-5, 2005 Sep 27.
Article in English | MEDLINE | ID: mdl-16172379

ABSTRACT

The development of efficient and inexpensive genome sequencing methods has revolutionized the study of human bacterial pathogens and improved vaccine design. Unfortunately, the sequence of a single genome does not reflect how genetic variability drives pathogenesis within a bacterial species and also limits genome-wide screens for vaccine candidates or for antimicrobial targets. We have generated the genomic sequence of six strains representing the five major disease-causing serotypes of Streptococcus agalactiae, the main cause of neonatal infection in humans. Analysis of these genomes and those available in databases showed that the S. agalactiae species can be described by a pan-genome consisting of a core genome shared by all isolates, accounting for approximately 80% of any single genome, plus a dispensable genome consisting of partially shared and strain-specific genes. Mathematical extrapolation of the data suggests that the gene reservoir available for inclusion in the S. agalactiae pan-genome is vast and that unique genes will continue to be identified even after sequencing hundreds of genomes.


Subject(s)
Genome, Bacterial , Streptococcus agalactiae/classification , Streptococcus agalactiae/genetics , Amino Acid Sequence , Bacterial Capsules/genetics , Base Sequence , Gene Expression , Genes, Bacterial , Genetic Variation , Molecular Sequence Data , Phylogeny , Sequence Alignment , Sequence Analysis, DNA , Streptococcus agalactiae/pathogenicity , Virulence/genetics
2.
Nat Biotechnol ; 23(7): 873-8, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15980861

ABSTRACT

Pseudomonas fluorescens Pf-5 is a plant commensal bacterium that inhabits the rhizosphere and produces secondary metabolites that suppress soilborne plant pathogens. The complete sequence of the 7.1-Mb Pf-5 genome was determined. We analyzed repeat sequences to identify genomic islands that, together with other approaches, suggested P. fluorescens Pf-5's recent lateral acquisitions include six secondary metabolite gene clusters, seven phage regions and a mobile genomic island. We identified various features that contribute to its commensal lifestyle on plants, including broad catabolic and transport capabilities for utilizing plant-derived compounds, the apparent ability to use a diversity of iron siderophores, detoxification systems to protect from oxidative stress, and the lack of a type III secretion system and toxins found in related pathogens. In addition to six known secondary metabolites produced by P. fluorescens Pf-5, three novel secondary metabolite biosynthesis gene clusters were also identified that may contribute to the biocontrol properties of P. fluorescens Pf-5.


Subject(s)
Genome, Bacterial , Pseudomonas fluorescens/genetics , Base Sequence , Biological Transport/genetics , Genes, Bacterial , Molecular Sequence Data , Multigene Family , Plants/microbiology , Pseudomonas fluorescens/metabolism , Sequence Analysis, DNA , Siderophores/biosynthesis , Siderophores/genetics
3.
Proc Natl Acad Sci U S A ; 101(39): 14246-51, 2004 Sep 28.
Article in English | MEDLINE | ID: mdl-15377793

ABSTRACT

The complete genome sequence of Burkholderia mallei ATCC 23344 provides insight into this highly infectious bacterium's pathogenicity and evolutionary history. B. mallei, the etiologic agent of glanders, has come under renewed scientific investigation as a result of recent concerns about its past and potential future use as a biological weapon. Genome analysis identified a number of putative virulence factors whose function was supported by comparative genome hybridization and expression profiling of the bacterium in hamster liver in vivo. The genome contains numerous insertion sequence elements that have mediated extensive deletions and rearrangements of the genome relative to Burkholderia pseudomallei. The genome also contains a vast number (>12,000) of simple sequence repeats. Variation in simple sequence repeats in key genes can provide a mechanism for generating antigenic variation that may account for the mammalian host's inability to mount a durable adaptive immune response to a B. mallei infection.


Subject(s)
Burkholderia mallei/genetics , Genome, Bacterial , Animals , Base Composition/genetics , Base Sequence , Burkholderia mallei/pathogenicity , Chromosomes, Bacterial/genetics , Cricetinae , Glanders/microbiology , Liver/metabolism , Mesocricetus , Molecular Sequence Data , Multigene Family , Oligonucleotide Array Sequence Analysis , Open Reading Frames/genetics , Virulence
4.
Proc Natl Acad Sci U S A ; 100(18): 10181-6, 2003 Sep 02.
Article in English | MEDLINE | ID: mdl-12928499

ABSTRACT

We report the complete genome sequence of the model bacterial pathogen Pseudomonas syringae pathovar tomato DC3000 (DC3000), which is pathogenic on tomato and Arabidopsis thaliana. The DC3000 genome (6.5 megabases) contains a circular chromosome and two plasmids, which collectively encode 5,763 ORFs. We identified 298 established and putative virulence genes, including several clusters of genes encoding 31 confirmed and 19 predicted type III secretion system effector proteins. Many of the virulence genes were members of paralogous families and also were proximal to mobile elements, which collectively comprise 7% of the DC3000 genome. The bacterium possesses a large repertoire of transporters for the acquisition of nutrients, particularly sugars, as well as genes implicated in attachment to plant surfaces. Over 12% of the genes are dedicated to regulation, which may reflect the need for rapid adaptation to the diverse environments encountered during epiphytic growth and pathogenesis. Comparative analyses confirmed a high degree of similarity with two sequenced pseudomonads, Pseudomonas putida and Pseudomonas aeruginosa, yet revealed 1,159 genes unique to DC3000, of which 811 lack a known function.


Subject(s)
Arabidopsis/microbiology , Genome, Bacterial , Pseudomonas/genetics , Solanum lycopersicum/microbiology , Base Sequence , Biological Transport , Molecular Sequence Data , Plant Growth Regulators/biosynthesis , Plasmids , Pseudomonas/metabolism , Pseudomonas/pathogenicity , Reactive Oxygen Species , Siderophores/biosynthesis , Virulence
5.
Proc Natl Acad Sci U S A ; 99(14): 9509-14, 2002 Jul 09.
Article in English | MEDLINE | ID: mdl-12093901

ABSTRACT

The complete genome of the green-sulfur eubacterium Chlorobium tepidum TLS was determined to be a single circular chromosome of 2,154,946 bp. This represents the first genome sequence from the phylum Chlorobia, whose members perform anoxygenic photosynthesis by the reductive tricarboxylic acid cycle. Genome comparisons have identified genes in C. tepidum that are highly conserved among photosynthetic species. Many of these have no assigned function and may play novel roles in photosynthesis or photobiology. Phylogenomic analysis reveals likely duplications of genes involved in biosynthetic pathways for photosynthesis and the metabolism of sulfur and nitrogen as well as strong similarities between metabolic processes in C. tepidum and many Archaeal species.


Subject(s)
Chlorobi/genetics , Chlorobi/metabolism , Genome, Bacterial , Carbon Dioxide/metabolism , Chromosomes, Bacterial/genetics , Citric Acid Cycle , DNA Repair , Electron Transport , Gene Duplication , Models, Biological , Molecular Sequence Data , Nitrogen/metabolism , Oxidative Stress , Photosynthesis , Phylogeny , Protein Biosynthesis , Pyrroles/metabolism , Sulfur/metabolism , Terpenes/metabolism , Tetrapyrroles , Transcription, Genetic
6.
Proc Natl Acad Sci U S A ; 99(4): 2275-80, 2002 Feb 19.
Article in English | MEDLINE | ID: mdl-11854524

ABSTRACT

The ability of Pseudomonas syringae pv. tomato DC3000 to parasitize tomato and Arabidopsis thaliana depends on genes activated by the HrpL alternative sigma factor. To support various functional genomic analyses of DC3000, and specifically, to identify genes involved in pathogenesis, we developed a draft sequence of DC3000 and used an iterative process involving computational and gene expression techniques to identify virulence-implicated genes downstream of HrpL-responsive promoters. Hypersensitive response and pathogenicity (Hrp) promoters are known to control genes encoding the Hrp (type III protein secretion) machinery and a few type III effector proteins in DC3000. This process involved (i) identification of 9 new virulence-implicated genes in the Hrp regulon by miniTn5gus mutagenesis, (ii) development of a hidden Markov model (HMM) trained with known and transposon-identified Hrp promoter sequences, (iii) HMM identification of promoters upstream of 12 additional virulence-implicated genes, and (iv) microarray and RNA blot analyses of the HrpL-dependent expression of a representative subset of these DC3000 genes. We found that the Hrp regulon encodes candidates for 4 additional type III secretion machinery accessory factors, homologs of the effector proteins HopPsyA, AvrPpiB1 (2 copies), AvrPpiC2, AvrPphD (2 copies), AvrPphE, AvrPphF, and AvrXv3, and genes associated with the production or metabolism of virulence factors unrelated to the Hrp type III secretion system, including syringomycin synthetase (SyrE), N(epsilon)-(indole-3-acetyl)-l-lysine synthetase (IaaL), and a subsidiary regulon controlling coronatine production. Additional candidate effector genes, hopPtoA2, hopPtoB2, and an avrRps4 homolog, were preceded by Hrp promoter-like sequences, but these had HMM expectation values of relatively low significance and were not detectably activated by HrpL.


Subject(s)
Bacterial Proteins/genetics , DNA-Binding Proteins , Genome, Bacterial , Promoter Regions, Genetic , Pseudomonas/genetics , Pseudomonas/pathogenicity , Sigma Factor/genetics , DNA Transposable Elements , Genes, Reporter , Solanum lycopersicum/microbiology , Markov Chains , Models, Genetic , Molecular Sequence Data , Mutagenesis, Site-Directed , Oligonucleotide Array Sequence Analysis , Open Reading Frames , RNA/metabolism , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...