Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Circulation ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836358

ABSTRACT

BACKGROUND: Whether aortic valve stenosis (AS) can adversely affect systemic endothelial function independently of standard modifiable cardiovascular risk factors is unknown. METHODS: We therefore investigated endothelial and cardiac function in an experimental model of AS mice devoid of standard modifiable cardiovascular risk factors and human cohorts with AS scheduled for transcatheter aortic valve replacement. Endothelial function was determined by flow-mediated dilation using ultrasound. Extracellular hemoglobin (eHb) concentrations and NO consumption were determined in blood plasma of mice and humans by ELISA and chemiluminescence. This was complemented by measurements of aortic blood flow using 4-dimensional flow acquisition by magnetic resonance imaging and computational fluid dynamics simulations. The effects of plasma and red blood cell (RBC) suspensions on vascular function were determined in transfer experiments in a murine vasorelaxation bioassay system. RESULTS: In mice, the induction of AS caused systemic endothelial dysfunction. In the presence of normal systolic left ventricular function and mild hypertrophy, the increase in the transvalvular gradient was associated with elevated eryptosis, increased eHb and plasma NO consumption; eHb sequestration by haptoglobin restored endothelial function. Because the aortic valve orifice area in patients with AS decreased, postvalvular mechanical stress in the central ascending aorta increased. This was associated with elevated eHb, circulating RBC-derived microvesicles, eryptotic cells, lower haptoglobin levels without clinically relevant anemia, and consecutive endothelial dysfunction. Transfer experiments demonstrated that reduction of eHb by treatment with haptoglobin or elimination of fluid dynamic stress by transcatheter aortic valve replacement restored endothelial function. In patients with AS and subclinical RBC fragmentation, the remaining circulating RBCs before and after transcatheter aortic valve replacement exhibited intact membrane function, deformability, and resistance to osmotic and hypoxic stress. CONCLUSIONS: AS increases postvalvular swirling blood flow in the central ascending aorta, triggering RBC fragmentation with the accumulation of hemoglobin in the plasma. This increases NO consumption in blood, thereby limiting vascular NO bioavailability. Thus, AS itself promotes systemic endothelial dysfunction independent of other established risk factors. Transcatheter aortic valve replacement is capable of limiting NO scavenging and rescuing endothelial function by realigning postvalvular blood flow to near physiological patterns. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT05603520. URL: https://www.clinicaltrials.gov; Unique identifier: NCT01805739.

2.
Basic Res Cardiol ; 117(1): 29, 2022 05 29.
Article in English | MEDLINE | ID: mdl-35643805

ABSTRACT

Aortic valve stenosis (AS) is the most frequent valve disease with relevant prognostic impact. Experimental model systems for AS are scarce and comprehensive imaging techniques to simultaneously quantify function and morphology in disease progression are lacking. Therefore, we refined an acute murine AS model to closely mimic human disease characteristics and developed a high-resolution magnetic resonance imaging (MRI) approach for simultaneous in-depth analysis of valvular, myocardial as well as aortic morphology/pathophysiology to identify early changes in tissue texture and critical transition points in the adaptive process to AS. AS was induced by wire injury of the aortic valve. Four weeks after surgery, cine loops, velocity, and relaxometry maps were acquired at 9.4 T to monitor structural/functional alterations in valve, aorta, and left ventricle (LV). In vivo MRI data were subsequently validated by histology and compared to echocardiography. AS mice exhibited impaired valve opening accompanied by significant valve thickening due to fibrotic remodelling. While control mice showed bell-shaped flow profiles, AS resulted not only in higher peak flow velocities, but also in fragmented turbulent flow patterns associated with enhanced circumferential strain and an increase in wall thickness of the aortic root. AS mice presented with a mild hypertrophy but unaffected global LV function. Cardiac MR relaxometry revealed reduced values for both T1 and T2 in AS reflecting subtle myocardial tissue remodelling with early alterations in mitochondrial function in response to the enhanced afterload. Concomitantly, incipient impairments of coronary flow reserve and myocardial tissue integrity get apparent accompanied by early troponin release. With this, we identified a premature transition point with still compensated cardiac function but beginning textural changes. This will allow interventional studies to explore early disease pathophysiology and novel therapeutic targets.


Subject(s)
Aortic Valve Stenosis , Multiparametric Magnetic Resonance Imaging , Animals , Aortic Valve/diagnostic imaging , Aortic Valve/pathology , Aortic Valve Stenosis/complications , Aortic Valve Stenosis/diagnostic imaging , Echocardiography , Mice , Ventricular Function, Left
3.
Clin Res Cardiol ; 108(8): 847-856, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30767058

ABSTRACT

Aortic valve stenosis (AS) is the most common valve disease requiring therapeutic intervention. Even though the incidence of AS has been continuously rising and AS is associated with significant morbidity and mortality, to date, no medical treatments have been identified that can modify disease progression. This unmet medical need is likely attributed to an incomplete understanding of the molecular mechanism driving disease development. To investigate the pathophysiology leading to AS, reliable and reproducible animal models that mimic human pathophysiology are needed. We have tested and expanded the protocols of a wire-injury induced AS mouse model. For this model, coronary wires were used to apply shear stress to the aortic valve cusps with increasing intensity. These protocols allowed distinction of mild, moderate and severe wire-injury. Upon moderate or severe injury, AS developed with a significant increase in aortic valve peak blood flow velocity. While moderate injury promoted solitary AS, severe-injury induced mixed aortic valve disease with concomitant mild to moderate aortic regurgitation. The changes in aortic valve function were reflected by dilation and hypertrophy of the left ventricle, as well as a decreased left ventricular ejection fraction. Histological analysis revealed the classic hallmarks of human disease with aortic valve thickening, increased macrophage infiltration, fibrosis and calcification. This new mouse model of AS promotes functional and morphological changes similar to moderate and severe human AS. It can be used to investigate the pathomechanisms contributing to AS development and to test novel therapeutic strategies.


Subject(s)
Aortic Valve Stenosis/diagnosis , Heart Ventricles/diagnostic imaging , Stroke Volume/physiology , Ventricular Function, Left/physiology , Animals , Aortic Valve , Aortic Valve Stenosis/physiopathology , Disease Models, Animal , Echocardiography , Heart Ventricles/physiopathology , Humans , Male , Mice, Inbred C57BL , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL
...