Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(21): e2313599121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38739790

ABSTRACT

The ecoevolutionary drivers of species niche expansion or contraction are critical for biodiversity but challenging to infer. Niche expansion may be promoted by local adaptation or constrained by physiological performance trade-offs. For birds, evolutionary shifts in migratory behavior permit the broadening of the climatic niche by expansion into varied, seasonal environments. Broader niches can be short-lived if diversifying selection and geography promote speciation and niche subdivision across climatic gradients. To illuminate niche breadth dynamics, we can ask how "outlier" species defy constraints. Of the 363 hummingbird species, the giant hummingbird (Patagona gigas) has the broadest climatic niche by a large margin. To test the roles of migratory behavior, performance trade-offs, and genetic structure in maintaining its exceptional niche breadth, we studied its movements, respiratory traits, and population genomics. Satellite and light-level geolocator tracks revealed an >8,300-km loop migration over the Central Andean Plateau. This migration included a 3-wk, ~4,100-m ascent punctuated by upward bursts and pauses, resembling the acclimatization routines of human mountain climbers, and accompanied by surging blood-hemoglobin concentrations. Extreme migration was accompanied by deep genomic divergence from high-elevation resident populations, with decisive postzygotic barriers to gene flow. The two forms occur side-by-side but differ almost imperceptibly in size, plumage, and respiratory traits. The high-elevation resident taxon is the world's largest hummingbird, a previously undiscovered species that we describe and name here. The giant hummingbirds demonstrate evolutionary limits on niche breadth: when the ancestral niche expanded due to evolution (or loss) of an extreme migratory behavior, speciation followed.


Subject(s)
Animal Migration , Birds , Genetic Speciation , Animals , Animal Migration/physiology , Birds/genetics , Birds/physiology , Birds/classification , Ecosystem , Altitude , Biological Evolution
2.
Environ Res ; 249: 118229, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38325785

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) in the environment pose persistent and complex threats to human and wildlife health. Around the world, PFAS point sources such as military bases expose thousands of populations of wildlife and game species, with potentially far-reaching implications for population and ecosystem health. But few studies shed light on the extent to which PFAS permeate food webs, particularly ecologically and taxonomically diverse communities of primary and secondary consumers. Here we conducted >2000 assays to measure tissue-concentrations of 17 PFAS in 23 species of mammals and migratory birds at Holloman Air Force Base (AFB), New Mexico, USA, where wastewater catchment lakes form biodiverse oases. PFAS concentrations were among the highest reported in animal tissues, and high levels have persisted for at least three decades. Twenty of 23 species sampled at Holloman AFB were heavily contaminated, representing middle trophic levels and wetland to desert microhabitats, implicating pathways for PFAS uptake: ingestion of surface water, sediments, and soil; foraging on aquatic invertebrates and plants; and preying upon birds or mammals. The hazardous long carbon-chain form, perfluorooctanosulfonic acid (PFOS), was most abundant, with liver concentrations averaging >10,000 ng/g wet weight (ww) in birds and mammals, respectively, and reaching as high 97,000 ng/g ww in a 1994 specimen. Perfluorohexanesulfonic acid (PFHxS) averaged thousands of ng/g ww in the livers of aquatic birds and littoral-zone house mice, but one order of magnitude lower in the livers of upland desert rodent species. Piscivores and upland desert songbirds were relatively uncontaminated. At control sites, PFAS levels were strikingly lower on average and different in composition. In sum, legacy PFAS at this desert oasis have permeated local aquatic and terrestrial food webs across decades, severely contaminating populations of resident and migrant animals, and exposing people via game meat consumption and outdoor recreation.


Subject(s)
Birds , Environmental Monitoring , Fluorocarbons , Animals , New Mexico , Fluorocarbons/analysis , Humans , Birds/metabolism , Mammals , Environmental Pollutants/analysis , Food Chain , Desert Climate , Environmental Exposure
3.
Mol Ecol ; 32(12): 3290-3307, 2023 06.
Article in English | MEDLINE | ID: mdl-36974685

ABSTRACT

Seasonal migration of Nearctic-Neotropical passerine birds may have profound effects on the diversity and abundance of their host-associated microbiota. Migratory birds experience seasonal change in environments and diets throughout the course of the annual cycle that, along with recurrent biological events such as reproduction, may significantly impact their microbiota. In this study, we characterize the intestinal microbiota of four closely related species of migratory Catharus thrushes at three time points of their migratory cycle: during spring migration, on the summer breeding territories and during fall migration. Using observations replicated over 3 years, we determined that microbial community diversity of Catharus thrushes was significantly different across distinct time periods of the annual cycle, whereas community composition was more similar within than across years. Elevated alpha diversity in the summer birds compared to either migratory period indicated that birds may harbour a reduced microbiota during active migration. We also found that community composition of the microbiota did not substantially differ between host species. Finally, we recovered two phyla, Cyanobacteria and Planctomycetota, which are not commonly described from birds, that were in relatively high abundance in specific years. This study contributes to our growing understanding of how microbiota in wild birds vary throughout disparate ecological conditions and reveals potential axes across which an animal's microbial flexibility adapts to variable environments and recurrent biological conditions throughout the annual cycle.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Songbirds , Animals , Seasons , Gastrointestinal Microbiome/genetics , Animal Migration
4.
Mol Ecol ; 30(9): 2087-2103, 2021 05.
Article in English | MEDLINE | ID: mdl-33615597

ABSTRACT

Hybridization, introgression, and reciprocal gene flow during speciation, specifically the generation of mitonuclear discordance, are increasingly observed as parts of the speciation process. Genomic approaches provide insight into where, when, and how adaptation operates during and after speciation and can measure historical and modern introgression. Whether adaptive or neutral in origin, hybridization can cause mitonuclear discordance by placing the mitochondrial genome of one species (or population) in the nuclear background of another species. The latter, introgressed species may eventually have its own mtDNA replaced or "captured" by other species across its entire geographical range. Intermediate stages in the capture process should be observable. Two nonsister species of Australasian monarch-flycatchers, Spectacled Monarch (Symposiachrus trivirgatus) mostly of Australia and Indonesia and Spot-winged Monarch (S. guttula) of New Guinea, present an opportunity to observe this process. We analysed thousands of single nucleotide polymorphisms (SNPs) derived from ultraconserved elements of all subspecies of both species. Mitochondrial DNA sequences of Australian populations of S. trivirgatus form two paraphyletic clades, one being sister to and presumably introgressed by S. guttula despite little nuclear signal of introgression. Population genetic analyses (e.g., tests for modern and historical gene flow and selection) support at least one historical gene flow event between S. guttula and Australian S. trivirgatus. We also uncovered introgression from the Maluku Islands subspecies of S. trivirgatus into an island population of S. guttula, resulting in apparent nuclear paraphyly. We find that neutral demographic processes, not adaptive introgression, are the most likely cause of these complex population histories. We suggest that a Pleistocene extinction of S. guttula from mainland Australia resulted from range expansion by S. trivirgatus.


Subject(s)
Gene Flow , Passeriformes , Animals , Australia , DNA, Mitochondrial/genetics , Hybridization, Genetic , Indonesia , Islands , New Guinea , Passeriformes/genetics , Phylogeny
5.
Mol Phylogenet Evol ; 156: 107034, 2021 03.
Article in English | MEDLINE | ID: mdl-33276120

ABSTRACT

Islands are separated by natural barriers that prevent gene flow between terrestrial populations and promote allopatric diversification. Birds in the South Pacific are an excellent model to explore the interplay between isolation and gene flow due to the region's numerous archipelagos and well-characterized avian communities. The wattled honeyeater complex (Foulehaio spp.) comprises three allopatric species that are widespread and common across Fiji, Tonga, Samoa, and Wallis and Futuna. Here, we explored patterns of diversification within and among these lineages using genomic and morphometric data. We found support for three clades of Foulehaio corresponding to three recognized species. Within F. carunculatus, population genetic analyses identified nine major lineages, most of which were composed of sub-lineages that aligned nearly perfectly to individual island populations. Despite genetic structure and great geographic distance between populations, we found low levels of gene flow between populations in adjacent archipelagos. Additionally, body size of F. carunculatus varied randomly with respect to evolutionary history (as Ernst Mayr predicted), but correlated negatively with island size, consistent with the island rule. Our findings support a hypothesis that widespread taxa can show population structure between immediately adjacent islands, and likely represent many independent lineages loosely connected by gene flow.


Subject(s)
Gene Flow , Genetics, Population , Islands , Passeriformes/genetics , Animals , Conserved Sequence/genetics , Female , Fiji , Likelihood Functions , Male , Phylogeny , Polymorphism, Single Nucleotide/genetics
6.
Mol Ecol ; 29(21): 4059-4073, 2020 11.
Article in English | MEDLINE | ID: mdl-32920924

ABSTRACT

Islands were key to the development of allopatric speciation theory because they are a natural laboratory of repeated barriers to gene flow caused by open water gaps. Despite their proclivity for promoting divergence, little empirical work has quantified the extent of gene flow among island populations. Following classic island biogeographic theory, two metrics of interest are relative island size and distance. Fiji presents an ideal system for studying these dynamics, with four main islands that form two large-small pairs. We sequenced thousands of ultraconserved elements (UCEs) of the Fiji bush-warbler Horornis ruficapilla, a passerine distributed on these four Fijian islands, and performed a demographic analysis to test hypotheses of the effects of island size and distance on rates of gene flow. Our demographic analysis inferred low levels of gene flow from each large island to its small counterpart and little or none in the opposite direction. The difference in the distance between these two island pairs manifested itself in lower levels of gene flow between more distant islands. Both findings are generally concordant with classic island biogeography. The amount of reduction in gene flow based on distance was consistent with predictions from island biogeographic equations, while the reduction from small to large islands was possibly greater than expected. These findings offer a hypothesis and framework to guide future study of interisland gene flow in archipelagos as the study of island biogeography progresses into the genomic era.


Subject(s)
Gene Flow , Passeriformes , Animals , Islands , Motivation , Passeriformes/genetics , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...