Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 19529, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33173097

ABSTRACT

Significant strides have been made in the development of in vitro systems for disease modelling. However, the requirement of microenvironment control has placed limitations on the generation of relevant models. Herein, we present a biological tissue printing approach that employs open-volume microfluidics to position individual cells in complex 2D and 3D patterns, as well as in single cell arrays. The variety of bioprinted cell types employed, including skin epithelial (HaCaT), skin cancer (A431), liver cancer (Hep G2), and fibroblast (3T3-J2) cells, all of which exhibited excellent viability and survivability, allowing printed structures to rapidly develop into confluent tissues. To demonstrate a simple 2D oncology model, A431 and HaCaT cells were printed and grown into tissues. Furthermore, a basic skin model was established to probe drug response. 3D tissue formation was demonstrated by co-printing Hep G2 and 3T3-J2 cells onto an established fibroblast layer, the functionality of which was probed by measuring albumin production, and was found to be higher in comparison to both 2D and monoculture approaches. Bioprinting of primary cells was tested using acutely isolated primary rat dorsal root ganglia neurons, which survived and established processes. The presented technique offers a novel open-volume microfluidics approach to bioprint cells for the generation of biological tissues.


Subject(s)
Bioprinting/methods , Microfluidics/methods , Printing, Three-Dimensional , Tissue Engineering/methods , 3T3 Cells , Animals , Cell Line , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Hep G2 Cells , Humans , Mice , Microscopy, Fluorescence , Rats , Skin/cytology , Skin/drug effects , Tretinoin/pharmacology
2.
ACS Nano ; 14(1): 241-254, 2020 01 28.
Article in English | MEDLINE | ID: mdl-31846286

ABSTRACT

Synthetic dry elastomers are randomly cross-linked polymeric networks with isotropic and unordered higher-level structural features. However, their growing use as soft-tissue biomaterials has demanded the need for an ordered and anisotropic nano-micro (or) mesoarchitecture, which is crucial for imparting specific properties such as hierarchical toughening, anisotropic mechanics, sustained drug delivery, and directed tissue growth. High processing cost, poor control in 3D, and compromised mechanical properties have made it difficult to synthesize tough and dry macroscopic elastomers with well-organized nano-microstructures. Inspired from biological design principles, we report a tough ordered mesoporous elastomer formed via bottom-up lyotropic self-assembly of noncytotoxic, polymerizable amphiphilic triblock copolymers and hydrophobic polymers. The elastomer is cross-linked using covalent cross-links and physical hydrophobic entanglements that are organized in a periodic manner at the nanoscale. This transforms into a well-ordered hexagonal arrangement of nanofibrils that are highly oriented at the micron scale, further organized as 3D macroscale objects. The ordered nano-microstructure and molecular multinetwork endows the elastomer with hierarchical toughening while possessing excellent stiffness and elongation comparable to engineering elastomers like silicone and vulcanized rubber. Processing of the elastomer is performed at ambient conditions using 3D printing and photo-cross-linking, which is fast and energy efficient and enables production of complex 3D objects with tailorable sub-millimeter features such as macroporosity. Furthermore, the periodic and amphiphilic nanostructure permits functionalization of the elastomer with secondary components such as inorganic nanoparticles or drug molecules, enabling complementary mechanical properties such as high stiffness and functional capabilities such as in localized drug delivery applications.


Subject(s)
Biocompatible Materials/chemistry , Elastomers/chemistry , Biocompatible Materials/chemical synthesis , Elastomers/chemical synthesis , Hydrophobic and Hydrophilic Interactions , Materials Testing , Particle Size , Porosity , Printing, Three-Dimensional , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...