Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
R Soc Open Sci ; 6(12): 191763, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31903217

ABSTRACT

The peeling of small-diameter rubberwood logs from the current short-rotation practices undoubtedly will produce lower grade veneers compared to the veneers from conventional planting rotation. Hence, this raises the question of the properties of the produced laminated veneer lumber (LVL) from veneers peeled from small-diameter rubberwood logs using the spindleless lathe technology. Different thicknesses of rubberwood veneers was peeled from rubberwood logs with diameter less than 20 cm using a spindleless lathe. Three-layer LVLs were prepared using phenol formaldehyde (PF) adhesive and hot pressed at different temperatures. During the peeling of veneer, lathe checks as deep as 30-60% of the veneer thickness are formed. Owing to deeper lathe check on 3 mm rubberwood veneer, higher pressing temperature significantly increased the gluebond shear strength of the PF-bonded LVL. In addition, lathe check frequency was also shown to influence the bond strength. The presence of higher lathe check frequency on 2 mm veneer increased the wettability, thus facilitating optimum penetration of adhesive for stronger bonding. These findings stress the importance of measuring and considering the lathe check depth and frequency during the lamination process to get a better understanding of bonding quality in veneer-based products.

2.
Environ Entomol ; 44(5): 1367-74, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26314017

ABSTRACT

The lower termite, Coptotermes curvignathus, is one of the most prominent plantation pests that feed upon, digest, and receive nourishment from exclusive lignocellulose diets. The objective of this study was to examine the utilization of sole carbon sources by isolated culturable aerobic bacteria among communities from the gut and foraging pathway of C. curvignathus. We study the bacteria occurrence from the gut of C. curvignathus and its surrounding feeding area by comparing the obtained phenotypic fingerprint with Biolog's extensive species library. A total of 24 bacteria have been identified mainly from the family Enterobacteriaceae from the identification of Biolog Gen III. Overall, the bacteria species in the termite gut differ from those of foraging pathway within a location, except Acintobacter baumannii, which was the only bacteria species found in both habitats. Although termites from a different study area do not have the same species of bacteria in the gut, they do have a bacterial community with similar role in degrading certain carbon sources. Sugars were preferential in termite gut isolates, while nitrogen carbon sources were preferential in foraging pathway isolates. The preferential use of specific carbon sources by these two bacterial communities reflects the role of bacteria for regulation of carbon metabolism in the termite gut and foraging pathway.


Subject(s)
Bacteria/isolation & purification , Bacteria/metabolism , Carbon/metabolism , Enterobacteriaceae/isolation & purification , Enterobacteriaceae/metabolism , Isoptera/microbiology , Animals , Bacteria/classification , Ecosystem , Enterobacteriaceae/classification , Gastrointestinal Tract/microbiology , Lignin/metabolism , Malaysia , Nitrogen/metabolism , Symbiosis
3.
Pak J Biol Sci ; 17(8): 956-63, 2014 Aug.
Article in English | MEDLINE | ID: mdl-26031014

ABSTRACT

Termites thrive in great abundance in terrestrial ecosystems and the symbiotic gut microbiota play important roles in digestion of lignocelluloses and nitrogen metabolism. Termites are excellent models of biocatalysts as they inhabit dense microbes in their guts that produce digestive enzymes to decompose lignocelluloses and convert it to end products such as sugars, hydrogen, and acetate. Different of digestive system between lower and higher termites which lower termites dependent on their dual decomposing system, consisting of termite's own cellulases and gut's protists. Higher termites decompose cellulose using their own enzymes, because of the absence of symbiotic protists. Termite gut prokaryotes efficiently support lignocelluloses degradation. In this review, a brief overview of recent experimental works, development and commercialization is discussed. Significant progress has been made to isolate cellulolytic strains from termites and optimise the digestion efficiency of cellulose. Future perspective should emphasize the isolation of cellulolytic strains from termites, genetically modifying or immobilization of the microbes which produce the desired enzyme and thus benefits on the microbiology and biotechnology.


Subject(s)
Isoptera/microbiology , Lignin/metabolism , Microbiota , Animals , Digestion , Intestines/microbiology , Isoptera/physiology
4.
Pak J Biol Sci ; 16(21): 1415-8, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24511759

ABSTRACT

The objective of this study is to investigate the feasibility of formaldehyde catcher as termites repellent. Single-layered UF-bonded particleboard was post-treated with formaldehyde catcher and heat respectively. Besides that, some boards were also produced with the formaldehyde catcher was added into the resin during the blending process, called add-in method. Particleboard post-treated with formaldehyde catcher reported the most severe attack. Heat-treated particleboard showed slightly better durability than the control blocks while the add-in catcher showed the best durability among three methods. A valid test was obtained as the termites survived the first week of the test. However, all the termites were found dead at the end of the test.


Subject(s)
Formaldehyde , Insect Control/methods , Insecticides , Isoptera , Animals , Hot Temperature
5.
Environ Technol ; 34(17-20): 2859-66, 2013.
Article in English | MEDLINE | ID: mdl-24527651

ABSTRACT

In Malaysia, large amounts of organic materials, which lead to disposal problems, are generated from agricultural residues especially from palm oil industries. Increasing landfill costs and regulations, which limit many types of waste accepted at landfills, have increased the interest in composting as a component of waste management. The objectives of this study were to characterize compost feedstock properties of common organic waste materials available in Malaysia. Thus, a ratio modelling of matching ingredients for empty fruit bunches (EFBs) co-composting using different organic materials in Malaysia was done. Organic waste materials with a C/N ratio of < 30 can be applied as a nitrogen source in EFB co-composting. The outcome of this study suggested that the percentage of EFB ranged between 50% and 60%, which is considered as the ideal mixing ratio in EFB co-composting. Conclusively, EFB can be utilized in composting if appropriate feedstock in term of physical and chemical characteristics is coordinated in the co-composting process.


Subject(s)
Soil/chemistry , Waste Management/methods , Waste Products/analysis , Agriculture/methods , Fertilizers/analysis , Malaysia , Metals, Heavy/analysis , Models, Chemical , Palm Oil , Plant Oils/chemistry , Waste Disposal Facilities
6.
Bioresour Technol ; 101(9): 3287-91, 2010 May.
Article in English | MEDLINE | ID: mdl-20056407

ABSTRACT

Ethanolic fermentation using Saccharomyces cerevisiae was carried out on three types of hydrolysates produced from lignocelulosic biomass which are commonly found in Malaysia such as oil palm trunk, rubberwood and mixed hardwood. The effect of fermentation temperature and pH of hydrolysate was evaluated to optimize the fermentation efficiency which defined as maximum ethanol yield in minimum fermentation time. The fermentation process using different temperature of 25 degrees Celsius, 30 degrees Celsius and 40 degrees Celsius were performed on the prepared fermentation medium adjusted to pH 4, pH 6 and pH 7, respectively. Results showed that the fermentation time was significantly reduced with the increase of temperature but an adverse reduction in ethanol yield was observed using temperature of 40 degrees Celsius. As the pH of hydrolysate became more acidic, the ethanol yield increased. Optimum fermentation efficiency for ethanolic fermentation of lignocellulosic hydrolysates using S. cerevisiae can be obtained using 33.2 degrees Celsius and pH 5.3.


Subject(s)
Ethanol/metabolism , Fermentation , Plant Oils/metabolism , Rubber/metabolism , Saccharomyces cerevisiae/metabolism , Wood/metabolism , Biomass , Hydrogen-Ion Concentration , Hydrolysis , Lignin/metabolism , Palm Oil , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...