Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Neurobiol ; 54(3): 2060-2078, 2017 04.
Article in English | MEDLINE | ID: mdl-26910821

ABSTRACT

Alzheimer's disease (AD) is a multifactorial disease of wide clinical heterogenity. Overproduction of amyloid precursor protein (APP) and accumulation of ß-amyloid (Aß) and tau proteins are important hallmarks of AD. The identification of early pathomechanisms of AD is critically important for discovery of early diagnosis markers. Decreased brain metabolism is one of the earliest clinical symptoms of AD that indicate mitochondrial dysfunction in the brain. We performed the first comprehensive study integrating synaptic and non-synaptic mitochondrial proteome analysis (two-dimensional differential gel electrophoresis (2D-DIGE) and mass spectrometry) in correlation with Aß progression in APP/PS1 mice (3, 6, and 9 months of age). We identified changes of 60 mitochondrial proteins that reflect the progressive effect of APP overproduction and Aß accumulation on mitochondrial processes. Most of the significantly affected proteins play role in the mitochondrial electron transport chain, citric acid cycle, oxidative stress, or apoptosis. Altered expression levels of Htra2 and Ethe1, which showed parallel changes in different age groups, were confirmed also by Western blot. The common regulator bioinformatical analysis suggests the regulatory role of tumor necrosis factor (TNF) in Aß-mediated mitochondrial protein changes. Our results are in accordance with the previous postmortem human brain proteomic studies in AD in the case of many proteins. Our results could open a new path of research aiming early mitochondrial molecular mechanisms of Aß accumulation as a prodromal stage of human AD.


Subject(s)
Amyloid beta-Peptides/metabolism , Brain/metabolism , Brain/pathology , Mitochondria/metabolism , Proteome/metabolism , Amyloid beta-Peptides/genetics , Animals , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria/genetics , Proteome/genetics
2.
J Proteomics ; 120: 142-57, 2015 Apr 29.
Article in English | MEDLINE | ID: mdl-25782751

ABSTRACT

The synapse is a particularly important compartment of neurons. To reveal its molecular characteristics we isolated whole brain synaptic (sMito) and non-synaptic mitochondria (nsMito) from the mouse brain with purity validated by electron microscopy and fluorescence activated cell analysis and sorting. Two-dimensional differential gel electrophoresis and mass spectrometry based proteomics revealed 22 proteins with significantly higher and 34 proteins with significantly lower levels in sMito compared to nsMito. Expression differences in some oxidative stress related proteins, such as superoxide dismutase [Mn] (Sod2) and complement component 1Q subcomponent-binding protein (C1qbp), as well as some tricarboxylic acid cycle proteins, including isocitrate dehydrogenase subunit alpha (Idh3a) and ATP-forming ß subunit of succinyl-CoA ligase (SuclA2), were verified by Western blot, the latter two also by immunohistochemistry. The data suggest altered tricarboxylic acid metabolism in energy supply of synapse while the marked differences in Sod2 and C1qbp support high sensitivity of synapses to oxidative stress. Further functional clustering demonstrated that proteins with higher synaptic levels are involved in synaptic transmission, lactate and glutathione metabolism. In contrast, mitochondrial proteins associated with glucose, lipid, ketone metabolism, signal transduction, morphogenesis, protein synthesis and transcription were enriched in nsMito. Altogether, the results suggest a specifically tuned composition of synaptic mitochondria. BIOLOGICAL SIGNIFICANCE: Neurons communicate with each other through synapse, a compartment metabolically isolated from the cell body. Mitochondria are concentrated in presynaptic terminals by active transport to provide energy supply for information transfer. Mitochondrial composition in the synapse may be different than in the cell body as some examples have demonstrated altered mitochondrial composition with cell type and cellular function in the muscle, heart and liver. Therefore, we posed the question whether protein composition of synaptic mitochondria reflects its specific functions. The determined protein difference pattern was in accordance with known functional specialties of high demand synaptic mitochondria. The data also suggest specifically tuned metabolic fluxes for energy production by means of interaction with glial cells surrounding the synapse. These findings provide possible mechanisms for dynamically adapting synaptic mitochondrial output to actual demand. In turn, an increased vulnerability of synaptic mitochondria to oxidative stress is implied by the data. This is important from theoretical but potentially also from therapeutic aspects. Mitochondria are known to be affected in some neurodegenerative and psychiatric disorders, and proteins with elevated level in synaptic mitochondria, e.g. C1qbp represent targets for future drug development, by which synaptic and non-synaptic mitochondria can be differentially affected.


Subject(s)
Brain/metabolism , Brain/ultrastructure , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Synapses/metabolism , Synapses/ultrastructure , Animals , Mice , Mice, Inbred BALB C , Nerve Tissue Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...