Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Hematol ; 104(5): 566-573, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27416819

ABSTRACT

Azacitidine (AZA) is a hypomethylating drug used to treat disorders associated with myelodysplasia and related neoplasms. Approximately 50 % of patients do not respond to AZA and have very poor outcomes. There is thus great interest in identifying predictive biomarkers for AZA responsiveness. We searched for specific genes whose expression level was associated with response status. Using microarrays, we analyzed gene expression patterns in bone marrow CD34+ cells in serial samples from 32 patients with myelodysplastic syndromes, chronic myelomonocytic leukemia, and acute myeloid leukemia with myelodysplasia-related changes before and during the AZA therapy. At baseline, a comparison of the responders and non-responders showed 52 differentially expressed genes (P < 0.01). Functional annotation of the deregulated genes revealed categories primarily related to ribosomes and pathways associated with proliferation. The expression level of RPL28 correlated with overall survival. We identified altered expression in 167 genes in responders, 26 genes in non-responders with stable disease, and 13 genes in non-responders with disease progression using paired t test of expression levels in patients before and during treatment. Our data indicate that AZA treatment failure is associated with the up-regulation of ribosomal genes/pathways that are likely related to intensive proteosynthesis in proliferative/neoplastic cells of non-responders.


Subject(s)
Azacitidine/pharmacology , Myelodysplastic Syndromes/drug therapy , Ribosomal Proteins/genetics , Transcriptome/drug effects , Azacitidine/therapeutic use , Bone Marrow Cells/metabolism , Cell Proliferation/genetics , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myelomonocytic, Chronic/genetics , Myelodysplastic Syndromes/genetics , Treatment Failure , Up-Regulation/drug effects
2.
Eur J Haematol ; 95(1): 27-34, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25284710

ABSTRACT

Downregulation of cereblon (CRBN) gene expression is associated with resistance to the immunomodulatory drug lenalidomide and poor survival outcomes in multiple myeloma (MM) patients. However, the importance of CRBN gene expression in patients with myelodysplastic syndrome (MDS) and its impact on lenalidomide therapy are not clear. In this study, we evaluate cereblon expression in mononuclear cells isolated from bone marrow [23 lower risk MDS patients with isolated 5q deletion (5q-), 37 lower risk MDS patients with chromosome 5 without the deletion of long arms (non-5q-), and 24 healthy controls] and from peripheral blood (38 patients with 5q-, 52 non-5q- patients and 25 healthy controls) to gain insight into, firstly, the role of cereblon in lower risk MDS patients with or without 5q deletion and, secondly, into the mechanisms of lenalidomide action. Patients with 5q- lower risk MDS have the highest levels of CRBN mRNA in comparison with both lower risk MDS without the deletion of long arms of chromosome 5 and healthy controls. CRBN gene expression was measured using the quantitative TaqMan real-time PCR. High levels of CRBN mRNA were detected in all lenalidomide responders during the course of therapy. A significant decrease of the CRBN mRNA level during lenalidomide treatment is associated with loss of response to treatment and disease progression. These results suggest that, similar to the treatment of MM, high levels of full-length CRBN mRNA in lower risk 5q- patients are necessary for the efficacy of lenalidomide.


Subject(s)
Anemia, Macrocytic/drug therapy , Gene Expression Regulation, Neoplastic , Immunologic Factors/therapeutic use , Myelodysplastic Syndromes/drug therapy , Peptide Hydrolases/genetics , RNA, Messenger/genetics , Thalidomide/analogs & derivatives , Adaptor Proteins, Signal Transducing , Anemia, Macrocytic/genetics , Anemia, Macrocytic/metabolism , Anemia, Macrocytic/pathology , Case-Control Studies , Chromosome Deletion , Chromosomes, Human, Pair 5/genetics , Chromosomes, Human, Pair 5/metabolism , Humans , Lenalidomide , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/metabolism , Myelodysplastic Syndromes/pathology , Peptide Hydrolases/metabolism , Polymorphism, Single Nucleotide , RNA Splicing , RNA, Messenger/metabolism , Signal Transduction , Thalidomide/therapeutic use , Treatment Outcome , Ubiquitin-Protein Ligases
3.
J Hematol Oncol ; 7: 66, 2014 Sep 30.
Article in English | MEDLINE | ID: mdl-25266220

ABSTRACT

BACKGROUND: Studying DNA methylation changes in the context of structural rearrangements and point mutations as well as gene expression changes enables the identification of genes that are important for disease onset and progression in different subtypes of acute myeloid leukemia (AML) patients. The aim of this study was to identify differentially methylated genes with potential impact on AML pathogenesis based on the correlation of methylation and expression data. METHODS: The primary method of studying DNA methylation changes was targeted bisulfite sequencing capturing approximately 84 megabases (Mb) of the genome in 14 diagnostic AML patients and a healthy donors' CD34+ pool. Subsequently, selected DNA methylation changes were confirmed by 454 bisulfite pyrosequencing in a larger cohort of samples. Furthermore, we addressed gene expression by microarray profiling and correlated methylation of regions adjacent to transcription start sites with expression of corresponding genes. RESULTS: Here, we report a novel hypomethylation pattern, specific to CBFB-MYH11 fusion resulting from inv(16) rearrangement that is associated with genes previously described as upregulated in inv(16) AML. We assume that this hypomethylation and corresponding overexpresion occurs in the genes whose function is important in inv(16) leukemogenesis. Further, by comparing all targeted methylation and microarray expression data, PBX3 differential methylation was found to correlate with its gene expression. PBX3 has been recently shown to be a key interaction partner of HOX genes during leukemogenesis and we revealed higher incidence of relapses in PBX3-overexpressing patients. CONCLUSIONS: We discovered new genomic regions with aberrant DNA methylation that are associated with expression of genes involved in leukemogenesis. Our results demonstrate the potential of the targeted approach for DNA methylation studies to reveal new regulatory regions.


Subject(s)
DNA Methylation/genetics , Gene Expression Regulation, Leukemic/genetics , Homeodomain Proteins/genetics , Leukemia, Myeloid, Acute/genetics , Oncogene Proteins, Fusion/genetics , Proto-Oncogene Proteins/genetics , Biomarkers, Tumor/genetics , Cluster Analysis , Female , Humans , Kaplan-Meier Estimate , Leukemia, Myeloid, Acute/mortality , Male , Prognosis , Proportional Hazards Models , Real-Time Polymerase Chain Reaction , Transcriptome
4.
Ann Hematol ; 92(1): 11-8, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22965552

ABSTRACT

Friend leukemia virus integration 1 (Fli1) and erythroid Krüppel-like factor (EKLF) participate under experimental conditions in the differentiation of megakaryocytic and erythroid progenitor in cooperation with other transcription factors, cytokines, cytokine receptors, and microRNAs. Defective erythropoiesis with refractory anemia and effective megakaryopoiesis with normal or increased platelet count is typical for 5q- syndrome. We decided to evaluate the roles of EKLF and Fli1 in the pathogenesis of this syndrome and of another ribosomopathy, Diamond-Blackfan anemia (DBA). Fli1 and EKLF mRNA levels were examined in mononuclear blood and bone marrow cells from patients with 5q- syndrome, low-risk MDS patients with normal chromosome 5, DBA patients, and healthy controls. In 5q- syndrome, high Fli1 mRNA levels in the blood and bone marrow mononuclear cells were found. In DBA, Fli1 expression did not differ from the controls. EKLF mRNA level was significantly decreased in the blood and bone marrow of 5q- syndrome and in all DBA patients. We propose that the elevated Fli1 in 5q- syndrome protects megakaryocytic cells from ribosomal stress contrary to erythroid cells and contributes to effective though dysplastic megakaryopoiesis.


Subject(s)
Anemia, Diamond-Blackfan/genetics , Anemia, Macrocytic/genetics , Erythropoiesis/genetics , Kruppel-Like Transcription Factors/physiology , Proto-Oncogene Protein c-fli-1/physiology , Thrombopoiesis/genetics , Adolescent , Adult , Anemia, Diamond-Blackfan/metabolism , Anemia, Macrocytic/metabolism , Bone Marrow Cells/metabolism , Child , Chromosome Deletion , Chromosomes, Human, Pair 5/genetics , Chromosomes, Human, Pair 5/metabolism , CpG Islands , Female , Humans , Kruppel-Like Transcription Factors/biosynthesis , Kruppel-Like Transcription Factors/genetics , Leukocytes, Mononuclear/metabolism , Male , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/metabolism , Proto-Oncogene Protein c-fli-1/biosynthesis , Proto-Oncogene Protein c-fli-1/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/blood , Real-Time Polymerase Chain Reaction , Ribosomal Proteins/physiology , Transcription, Genetic , Young Adult
5.
Clin Transplant ; 27(1): E21-9, 2013.
Article in English | MEDLINE | ID: mdl-23231003

ABSTRACT

Overall 42 patients (pts) transplanted in hematological CR1 were retrospectively analyzed. Median follow-up was 15 months (range 2-77). The expression of WT1 gene was measured according to the European Leukaemia Net recommendations. At the time of allogeneic stem cell transplantation (allo-SCT) 29 pts were WT1-negative and 13 pts were WT1-positive. In the univariate analysis, significantly better results were observed in the group of WT1 neg in terms of progression-free survival (in three yr 77% vs. 27%, p = 0.001). In multivariate analysis, the only significant feature in terms of better OS was WT1 negativity (p = 0.029). Our results show that minimal residual disease status measured by quantitative assessment of WT1 gene in acute myeloid leukemia pts in CR1 significantly affects their future prognosis after allo-SCT.


Subject(s)
Leukemia, Myeloid, Acute/therapy , Neoplasm, Residual/diagnosis , Stem Cell Transplantation/adverse effects , WT1 Proteins/genetics , Adult , Female , Flow Cytometry , Follow-Up Studies , Humans , Leukemia, Myeloid, Acute/complications , Leukemia, Myeloid, Acute/mortality , Male , Middle Aged , Neoplasm, Residual/etiology , Neoplasm, Residual/mortality , Prognosis , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Remission Induction , Retrospective Studies , Reverse Transcriptase Polymerase Chain Reaction , Survival Rate , Transplantation, Homologous , Young Adult
6.
Exp Ther Med ; 3(1): 129-133, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22969857

ABSTRACT

To date, approximately one half of acute myeloid leukaemia (AML) patients do not have a suitable specific molecular marker for monitoring minimal residual disease (MRD). The Wilm's tumour gene (WT1) has been suggested as a possible molecular marker of MRD in AML. The expression of WT1 in peripheral blood (PB) was measured using quantitative real-time reverse transcription-polymerase chain reaction in peripheral leukocytes from 151 patients with AML at diagnosis. WT1 expression was significantly elevated, i.e. up to 3 orders of magnitude in the majority (80%) of AML patients at diagnosis compared to the PB of healthy donors. Sequence samples of the long-term followed-up AML patients treated with chemotherapy and/or allogeneic bone marrow transplantation were analysed for WT1 expression. The results revealed that the hematological relapses were preceded (median, 1.8 months) by an increase in WT1 gene expression. For the practical utility of this gene as a molecular marker of relapse, it was necessary to determine an upper remission limit, crossing which would signal hematological relapse. The upper remission limit was determined in our set of patients to be 0.02 WT1/ABL. The AML patients who consequently relapsed crossed this upper remission limit; however, those in permanent remission did not. Therefore, this upper remission limit could be taken as the border of molecular relapse of AML patients. Moreover, insufficient decline of WT1 expression under the upper remission limit following induction and/or consolidation therapy was associated with markedly high risk of relapse. The results show that our upper remission limit can be taken as the border of molecular relapse of AML patients and WT1 levels following initial therapy as a beneficial prognostic marker.

7.
Leuk Res ; 36(9): 1128-33, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22749068

ABSTRACT

We examined 79 acute myeloid leukemia (AML) patients for DNA methylation of 12 tumor suppressor genes (TSG) and 24 homeobox domain (Hox) genes, and additionally for mutations in DNMT3A gene. We observed lower levels of DNA methylation (P<0.0001) as well as smaller numbers of concurrently hypermethylated genes (P<0.0001) in patients with DNMT3A mutations. Our study of the impact of DNA methylation on prognosis in intermediate and high risk AML patients revealed a relation between higher DNA methylation and better patients' outcome. Lower DNA methylation was linked with higher relapse rates and an inferior overall survival.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methylation/genetics , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Mutation, Missense , Adult , Aged , Aged, 80 and over , Cohort Studies , Cytogenetic Analysis , DNA Methyltransferase 3A , Down-Regulation/genetics , Epigenesis, Genetic/physiology , Female , Gene Expression Regulation, Leukemic/genetics , Gene Expression Regulation, Leukemic/physiology , Humans , Leukemia, Myeloid, Acute/mortality , Male , Middle Aged , Mutation, Missense/physiology , Prognosis , Survival Analysis , Young Adult
8.
Genes Chromosomes Cancer ; 51(5): 419-28, 2012 May.
Article in English | MEDLINE | ID: mdl-22250017

ABSTRACT

Myelodysplastic syndrome (MDS), a clonal disorder originating from hematopoietic stem cell, is characterized by a progressive character often leading to transformation to acute myeloid leukemia. We used single nucleotide polymorphism arrays (SNP-A) to identify previously cryptic chromosomal abnormalities such as copy number alterations and uniparental disomies (UPD) in cytogenetically normal MDS. In the aberrant regions, we attempted to localize candidate genes with potential relevance to the disease. Using SNP-A, we analyzed peripheral blood granulocytes from 37 MDS patients. The analysis identified 13 cryptic chromosomal defects in 10 patients (27%). Four UPD (affecting chromosomes 3q, 7q, 17q, and 20p), 5 deletions and 4 duplications were detected. Gene expression data measured on CD34+ cells were available for 4 patients with and 6 patients without SNP-A lesions. We performed an integrative analysis of genotyping and gene expression microarrays and found several genes with an altered expression located in the aberrant regions. The expression microarrays suggested BMP2 and TRIB3 located in 20p UPD as potential candidate genes contributing to MDS. We showed that the genome-wide integrative approach is beneficial to the comprehension of molecular backgrounds of diseases with incompletely understood etiopathology.


Subject(s)
Chromosome Aberrations , Gene Expression Profiling , Karyotype , Myelodysplastic Syndromes/genetics , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide , Adult , Aged , Aged, 80 and over , Female , Follow-Up Studies , Humans , Male , Middle Aged , Myelodysplastic Syndromes/mortality , Reproducibility of Results , Survival Analysis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...