Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Invest Dermatol ; 144(7): 1544-1556.e9, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38237730

ABSTRACT

Atopic dermatitis (AD) is a debilitating inflammatory skin disorder. Biologics targeting the IL-4/IL-13 axis are effective in AD, but there is still a large proportion of patients who do not respond to IL-4R blockade. Further exploration of potentially pathogenic T-cell-derived cytokines in AD may lead to new effective treatments. This study aimed to investigate the downstream effects of IL-26 on skin in the context of type 2 skin inflammation. We found that IL-26 alone exhibited limited inflammatory activity in the skin. However, in the presence of IL-1ß, IL-26 potentiated the secretion of TSLP, CXCL1, and CCL20 from human epidermis through Jak/signal transducer and activator of transcription signaling. Moreover, in an in vivo AD-like skin inflammation model, IL-26 exacerbated skin pathology and locally increased type 2 cytokines, most notably of IL13 in skin T helper cells. Neutralization of IL-1ß abrogated IL-26-mediated effects, indicating that the presence of IL-1ß is required for full IL-26 downstream action in vivo. These findings suggest that the presence of IL-1ß enables IL-26 to be a key amplifier of inflammation in the skin. As such, IL-26 may contribute to the development and pathogenesis of inflammatory skin disorders such as AD.


Subject(s)
Dermatitis, Atopic , Interleukin-1beta , Interleukins , Humans , Dermatitis, Atopic/immunology , Dermatitis, Atopic/pathology , Interleukin-1beta/metabolism , Animals , Mice , Interleukins/metabolism , Interleukins/immunology , Disease Models, Animal , Cytokines/metabolism , Signal Transduction/immunology , Female , Keratinocytes/immunology , Keratinocytes/metabolism , Skin/pathology , Skin/immunology , Cells, Cultured
2.
Dev Dyn ; 244(4): 591-606, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25690936

ABSTRACT

BACKGROUND: Pluripotency, self-renewal, and differentiation are special features of embryonic stem (ES) cells, thereby providing valuable perspectives in regenerative medicine. Developmental processes require a fine-tuned organization, mainly regulated by the well-known JAK/STAT, PI3K/AKT, and ERK/MAPK pathways. SPREDs (Sprouty related proteins with EVH1 domain) were discovered as inhibitors of the ERK/MAPK signaling pathway, whereas nothing was known about their functions in ES cells and during early differentiation, so far. RESULTS: We generated SPRED1 and SPRED2 overexpressing and SPRED2 knockout murine ES cells to analyze the functions of SPRED proteins in ES cells and during early differentiation. Overexpression of SPREDs increases significantly the self-renewal and clonogenicity of murine ES cells, whereas lack of SPRED2 reduces proliferation and increases apoptosis. During early differentiation in embryoid bodies, SPREDs promote the pluripotent state and inhibit differentiation whereby mesodermal differentiation into cardiomyocytes is considerably delayed and inhibited. LIF- and growth factor-stimulation revealed that SPREDs inhibit ERK/MAPK activation in murine ES cells. However, no effects were detectable on LIF-induced activation of the JAK/STAT3, or PI3K/AKT signaling pathway by SPRED proteins. CONCLUSIONS: We show that SPREDs promote self-renewal and inhibit mesodermal differentiation of murine ES cells by selective suppression of the ERK/MAPK signaling pathway in pluripotent cells.


Subject(s)
Embryonic Stem Cells/metabolism , Leukemia Inhibitory Factor/metabolism , Mesoderm/metabolism , Repressor Proteins/metabolism , STAT3 Transcription Factor/metabolism , Adaptor Proteins, Signal Transducing , Animals , Apoptosis , Cell Differentiation , Cell Proliferation , Embryonic Stem Cells/cytology , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Humans , Image Processing, Computer-Assisted , MAP Kinase Signaling System , Mice , Mice, Transgenic , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...