Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 128(9): 094301, 2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35302833

ABSTRACT

We demonstrate parametric coupling between two modes of a silicon nitride membrane. We achieve the coupling by applying an oscillating voltage to a sharp metal tip that approaches the membrane surface to within a few 100 nm. When the voltage oscillation frequency is equal to the mode frequency difference, the modes exchange energy periodically and faster than their free energy decay rate. This flexible method can potentially be useful for rapid state control and transfer between modes, and is an important step toward parametric spin sensing experiments with membrane resonators.

2.
Phys Rev Lett ; 123(25): 254102, 2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31922787

ABSTRACT

We experimentally demonstrate flipping the phase state of a parametron within a single period of its oscillation. A parametron is a binary logic element based on a driven nonlinear resonator. It features two stable phase states that define an artificial spin. The most basic operation performed on a parametron is a bit flip between these two states. Thus far, this operation involved changing the energetic population of the resonator and therefore required a number of oscillations on the order of the quality factor Q. Our technique takes a radically different approach and relies on rapid control of the underlying potential. Our work represents a paradigm shift for phase-encoded logic operations by boosting the speed of a parametron bit flip to its ultimate limit.

SELECTION OF CITATIONS
SEARCH DETAIL
...