Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 27(6): 6180-6192, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31865574

ABSTRACT

More knowledge of the geochemical behavior of tungsten (W) and associated contamination risks is needed. Therefore, weathering of scheelite (CaWO4) and secondary sequestration and transport of W to groundwater in historical skarn tailings and surface water downstream of the tailings were studied. The tailings contained 920 mg/kg W, primarily in scheelite. Mineralogical and geochemical analyses were combined to elucidate the geochemical behavior of W in the tailings, and water samples were taken monthly during 2018 to monitor its mobility. In the tailings, a large peak of W was found at 1.5 m depth. There, 30 wt%. of W was present in easily reducible phases, indicating former scheelite weathering. Currently, W is being released from scheelite to water-soluble phases at 2.5 m depth. The release of WO42- is hypothetically attributed to anion exchange with CO32- released from calcite neutralizing acid produced from pyrrhotite oxidation in the upper tailings and transported downwards to pH conditions > 7. Higher concentrations of dissolved W were found in the groundwater and particulate W in downstream surface water than in reference water, but they were lower than current contamination thresholds. Tungsten showed correlations with hydrous ferric oxides (HFO) in both the tailings and surface water.


Subject(s)
Calcium Compounds/analysis , Environmental Monitoring , Soil Pollutants/analysis , Tungsten Compounds/analysis , Tungsten , Mining , Models, Chemical , Sulfides , Sweden , Weather
SELECTION OF CITATIONS
SEARCH DETAIL
...