Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Ground Water ; 59(6): 819-828, 2021 11.
Article in English | MEDLINE | ID: mdl-33837529

ABSTRACT

Gravity-driven infiltration into the shallow subsurface via small-diameter wells (SDWs), i.e., wells with an inner diameter smaller than 7.5 cm (3 inches) and no gravel pack) has proven to be a cost-efficient and flexible tool for managed aquifer recharge (MAR), as it provides relatively high recharge rates with minimal construction effort. SDWs have a significantly smaller open filter area than larger diameter wells with gravel pack, making the infiltration of low-quality waters through these wells more at risk clogging. To investigate their susceptibility for biological and physical clogging, 24 physical models with different well setups were evaluated by infiltrating either nutrient-poor but turbid water or nutrient-rich but clear water. The experiments showed that smaller diameters and the lack of a gravel pack increase the well's susceptibility to both kinds of clogging. However, this effect was observed to be much more pronounced for physical than for biological clogging. Our conclusion is that SDWs show severe disadvantages with respect to the infiltration of highly turbid waters in comparison to large diameter wells with a gravel pack. Nevertheless, this disadvantage is much less severe when it comes to the infiltration of clear but nutrient-rich waters (e.g., treated wastewater). Depending on the economic and geological circumstances of a MAR-project, this disadvantage could be outweighed by the significantly lower construction costs of SDWs.


Subject(s)
Groundwater , Models, Theoretical , Wastewater , Water Movements , Water Wells
2.
J Contam Hydrol ; 235: 103709, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32916587

ABSTRACT

A large number of potentially contaminated sites reported worldwide require cost- and time-effective assessment of the extent of contamination and the threats posed to the water resources. A significant risk assessment metric for these sites can be the determination of the maximum (i.e., steady-state) contaminant plume length (Lmax). Analytical approaches in the literature provide an option for such an assessment, but they include a certain degree of uncertainty. Often, the causes of such uncertainties are the simplifications in the analytical models, e.g., not considering the influence of hydrogeological stresses such as recharge, which impact the plume development significantly. This may lead to an over- or underestimation of Lmax. This work includes the influence of the recharge for the effective estimation of Lmax. For that, several two-dimensional (2D) numerical simulations have been performed by considering different aquifer thicknesses (1 m- 4 m) and recharge rates (ranging from 0 to 3.6 mm/day). From the numerical results of this work, it has been deduced that 1) the application of the recharge shortens Lmax, and the recharge entering the aquifer top causes the plume to tilt, 2) the reduction percentage in Lmax depends on the recharge rate applied and the aquifer thickness, and 3) the reduction percentage varies in a non-linear manner with respect to the recharge rate for a fixed aquifer thickness. Based on these results, a hybrid analytical-empirical solution has been developed for the estimation of Lmax with the inclusion of the recharge rate. The proposed hybrid analytical-empirical solution superimposes an empirically obtained correction factor onto an analytical solution. Although extensive confirmation steps of the developed model are required for including the effect of the recharge on aquifer hydraulics, the proposed expression improves the estimation of the Lmax significantly. The hybrid analytical-empirical solution has also been confirmed with a selection of limited field contamination sites data. The hybrid model result (Lhyb) provides a significant improvement in the estimation, i.e., an order of magnitude lower mean relative error compared to the analytical model.


Subject(s)
Groundwater , Water Movements , Models, Theoretical , Uncertainty
3.
Ground Water ; 58(1): 125-131, 2020 01.
Article in English | MEDLINE | ID: mdl-31037740

ABSTRACT

Locally collected precipitation water can be actively used as a groundwater tracer solution based on four inherent tracer signals: electrical conductivity, stable isotopic signatures of deuterium [δ2 H], oxygen-18 [δ18 O], and heat, which all may strongly differ from the corresponding background values in the tested groundwater. In hydrogeological practice, a tracer test is one of the most important methods for determining subsurface connections or field parameters, such as porosity, dispersivity, diffusion coefficient, groundwater flow velocity, or flow direction. A common problem is the choice of tracer and the corresponding permission by the appropriate authorities. This problem intensifies where tracer tests are conducted in vulnerable conservation or water protection areas (e.g., around drinking water wells). The use of (if required treated) precipitation as an elemental groundwater tracer is a practical solution for this problem, as it does not introduce foreign matters into the aquifer system, which may contribute positively to the permission delivery. Before tracer application, the natural variations of the participating end members' tracer signals have to be evaluated locally. To obtain a sufficient volume of tracer solution, precipitation can be collected as rain using a detached, large-scale rain collector, which will be independent from possibly existing surfaces like roofs or drained areas. The collected precipitation is then stored prior to a tracer experiment.


Subject(s)
Groundwater , Environmental Monitoring , Rain , Water , Water Movements
4.
Sci Total Environ ; 693: 133478, 2019 Nov 25.
Article in English | MEDLINE | ID: mdl-31362223

ABSTRACT

Remediation measures are crucial to prevent or reverse seawater intrusion deteriorating coastal fresh groundwater resources. The mixed hydraulic barrier approach, as a combination of positive and negative hydraulic barriers, holds promising advantages especially for arid areas because extracted water provides a resource for injection after treatment. However, transient remediation mechanisms and impact of parameters are still unsatisfyingly understood. Therefore, the feasibility and optimal management of mixed hydraulic barriers as well as a comparison to single positive and negative barriers are explored with a synthetic 2D variable-density model of an already salinated, unconfined coastal aquifer using SEAWAT and FloPy. The hydraulic conductivity, porosity, injection and extraction rate, barrier locations, injection salt concentration, and reduction of pumping stress are varied jointly to determine the parameters' impact and interdependencies. The hydraulic conductivity controls the overall remediation potential as a hydrogeological component. Reduced inland abstractions of supply wells and the injection rates of the positive barrier show the largest remediation effects. However, locating the positive barrier within the salt wedge poses the risk of trapping salt landside. A sole negative barrier did not improve remediation substantially. This study thus shows that remediation with mixed hydraulic barriers can be feasible if implemented according to local conditions.

5.
J Hazard Mater ; 375: 233-240, 2019 08 05.
Article in English | MEDLINE | ID: mdl-31075551

ABSTRACT

Dense non-aqueous phase liquids, i.e., DNAPLs and the evolving contaminant plumes in aquifers provide significant potential to pose hazards affecting both environment and human health. Therefore, a proper assessment of contaminant spreading within the subsurface is critical. This includes a sufficient characterization of governing parameters describing both the subsurface and the contaminant itself. Thereby, knowledge on the contaminant source zone and especially the source zone geometry, i.e., SZG is critically required, yet very uncertain. This study identifies current limitations and open research questions in the formation and shape determination of source zone geometry, as well as its relevance for contaminant plumes. Our literature review reveals that existing characterization methods are subject to data interpretation uncertainties, while the application of these methods on field scale is limited by technical demands and accompanied efforts. In a next step, methods to implement increased source zone information into calculation methods are discussed. By means of an exemplary application of selected assessment tools, i.e., plume response models, results clearly proof the relevance of SZGs for site assessment. However, existing plume response models consider over-simplified geometries that may compromise their suitability. Our findings identify the demand for improved characterization of complex SZGs and the need to better evaluate the dependency of DNAPL migration on system properties and external influences. With emphasized knowledge on the most relevant SZG features, the delineation of "effective" SZGs allowing for straightforward implementation into plume response models and an adaption of the latter to incorporate more information on SZGs should be possible.

6.
Ground Water ; 55(1): 129-135, 2017 01.
Article in English | MEDLINE | ID: mdl-27339746

ABSTRACT

In this article, we present a straightforward random walk model for fast evaluation of push-pull tracer tests. By developing an adaptive algorithm, we overcome the problem of manually defining how many particles have to be used to simulate the transport problem. Beside this, we validate the random walk model by evaluating a push-pull tracer test with drift phase and confirm the results with MT3DMS. The random walk model took less than 1% of computational time of MT3DMS, thus allowing a remarkable faster evaluation of push-pull tracer tests.


Subject(s)
Groundwater , Environmental Monitoring , Models, Theoretical
7.
Ground Water ; 54(3): 425-33, 2016 05.
Article in English | MEDLINE | ID: mdl-26313764

ABSTRACT

Aquifer storage and recovery (ASR) is the artificial recharge and temporary storage of water in an aquifer when water is abundant, and recovery of all or a portion of that water when it is needed. One key limiting factor that still hinders the effectiveness of ASR is the high costs of constructing, maintaining, and operating the artificial recharge systems. Here we investigate a new recharge method for ASR in near-surface unconsolidated aquifers that uses small-diameter, low-cost wells installed with direct-push (DP) technology. The effectiveness of a DP well for ASR recharge is compared with that of a surface infiltration basin at a field site in north-central Kansas. The performance of the surface basin was poor at the site due to the presence of a shallow continuous clay layer, identified with DP profiling methods, that constrained the downward movement of infiltrated water and significantly reduced the basin recharge capacity. The DP well penetrated through this clay layer and was able to recharge water by gravity alone at a much higher rate. Most importantly, the costs of the DP well, including both the construction and land costs, were only a small fraction of those for the infiltration basin. This low-cost approach could significantly expand the applicability of ASR as a water resources management tool to entities with limited fiscal resources, such as many small municipalities and rural communities. The results of this investigation demonstrate the great potential of DP wells as a new recharge option for ASR projects in near-surface unconsolidated aquifers.


Subject(s)
Groundwater , Water Movements , Cities , Kansas , Water Supply
8.
Ground Water ; 50(6): 935-42, 2012.
Article in English | MEDLINE | ID: mdl-22582812

ABSTRACT

Knowledge of site-specific contaminant transport processes is an essential requirement for performing various tasks concerning the protection and management of groundwater resources. However, prediction of their behavior is often difficult, especially in heterogeneous aquifers because of the lack of information about flow- and transport-governing subsurface structures and parameters. Hence, stochastic approaches have been developed and frequently used. However, extensive modeling studies on sedimentary structures have shown that consideration of hydrogeological subunits and their distribution can be essential for transport modeling. A case study from the intensely investigated Lauswiesen site is used to demonstrate that more accurate predictions are possible with improved knowledge of deterministic structures. Results of this case study using direct-push injection logging (DPIL) provide a more reliable characterization of hydraulic conductivity than sieve and flow meter data.


Subject(s)
Environmental Monitoring/methods , Groundwater , Hydrodynamics , Hydrology/methods , Soil Pollutants/chemistry , Water Pollutants/chemistry , Germany , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...