Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(4)2022 Feb 12.
Article in English | MEDLINE | ID: mdl-35215620

ABSTRACT

Entangled semiflexible polymer networks are usually described by the tube model, although this concept has not been able to explain all experimental observations. One of its major shortcomings is neglecting the thermal fluctuations of the polymers surrounding the examined test filament, such that disentanglement effects are not captured. In this study, we present experimental evidence that correlated constraint release which has been predicted theoretically occurs in entangled, but not in crosslinked semiflexible polymer networks. By tracking single semiflexible DNA nanotubes embedded both in entangled and crosslinked F-actin networks, we observed different reptation dynamics in both systems, emphasizing the need for a revision of the classical tube theory for entangled polymer solutions.

2.
Phys Rev E ; 103(6-1): 062501, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34271634

ABSTRACT

Single-filament tracing has been a valuable tool to directly determine geometrical and mechanical properties of entangled polymer networks. However, systematically verifying how the stiffness of the tracer filament or its molecular interactions with the surrounding network impacts the measurement of these parameters has not been possible with the established experimental systems. Here we use mechanically programmable DNA nanotubes embedded in crosslinked and entangled F-actin networks, as well as in synthetic DNA networks, in order to measure fundamental, structural network properties like tube width and mesh size with respect to the stiffness of the tracers. While we confirm some predictions derived from models based purely on steric interactions, our results indicate that these models should be expanded to account for additional interfilament interactions, thereby describing the behavior of real polymer networks.

3.
Soft Matter ; 14(39): 7970-7978, 2018 Oct 10.
Article in English | MEDLINE | ID: mdl-30176034

ABSTRACT

The cytoskeleton is a highly interconnected meshwork of strongly coupled subsystems providing mechanical stability as well as dynamic functions to cells. To elucidate the underlying biophysical principles, it is central to investigate not only one distinct functional subsystem but rather their interplay as composite biopolymeric structures. Two of the key cytoskeletal elements are actin and vimentin filaments. Here, we show that composite networks reconstituted from actin and vimentin can be described by a superposition of two non-interacting scaffolds. Arising effects are demonstrated in a scale-spanning frame connecting single filament dynamics to macro-rheological network properties. The acquired results of the linear and non-linear bulk mechanics can be captured within an inelastic glassy wormlike chain model. In contrast to previous studies, we find no emergent effects in these composite networks. Thus, our study paves the way to predict the mechanics of the cytoskeleton based on the properties of its single structural components.

4.
J Vis Exp ; (128)2017 10 25.
Article in English | MEDLINE | ID: mdl-29155710

ABSTRACT

Mechanical properties of complex, polymer-based soft matter, such as cells or biopolymer networks, can be understood in neither the classical frame of flexible polymers nor of rigid rods. Underlying filaments remain outstretched due to their non-vanishing backbone stiffness, which is quantified via the persistence length (lp), but they are also subject to strong thermal fluctuations. Their finite bending stiffness leads to unique, non-trivial collective mechanics of bulk networks, enabling the formation of stable scaffolds at low volume fractions while providing large mesh sizes. This underlying principle is prevalent in nature (e.g., in cells or tissues), minimizing the high molecular content and thereby facilitating diffusive or active transport. Due to their biological implications and potential technological applications in biocompatible hydrogels, semiflexible polymers have been subject to considerable study. However, comprehensible investigations remained challenging since they relied on natural polymers, such as actin filaments, which are not freely tunable. Despite these limitations and due to the lack of synthetic, mechanically tunable, and semiflexible polymers, actin filaments were established as the common model system. A major limitation is that the central quantity lp cannot be freely tuned to study its impact on macroscopic bulk structures. This limitation was resolved by employing structurally programmable DNA nanotubes, enabling controlled alteration of the filament stiffness. They are formed through tile-based designs, where a discrete set of partially complementary strands hybridize in a ring structure with a discrete circumference. These rings feature sticky ends, enabling the effective polymerization into filaments several microns in length, and display similar polymerization kinetics as natural biopolymers. Due to their programmable mechanics, these tubes are versatile, novel tools to study the impact of lp on the single-molecule as well as the bulk scale. In contrast to actin filaments, they remain stable over weeks, without notable degeneration, and their handling is comparably straightforward.


Subject(s)
DNA/chemistry , Nanotubes/chemistry , Polymers/chemistry , Base Sequence , Microscopy, Atomic Force , Nucleic Acid Conformation , Nucleic Acid Hybridization
5.
Phys Rev Lett ; 117(19): 197801, 2016 Nov 04.
Article in English | MEDLINE | ID: mdl-27858441

ABSTRACT

The mechanics of complex soft matter often cannot be understood in the classical physical frame of flexible polymers or rigid rods. The underlying constituents are semiflexible polymers, whose finite bending stiffness (κ) leads to nontrivial mechanical responses. A natural model for such polymers is the protein actin. Experimental studies of actin networks, however, are limited since the persistence length (l_{p}∝κ) cannot be tuned. Here, we experimentally characterize this parameter for the first time in entangled networks formed by synthetically produced, structurally tunable DNA nanotubes. This material enabled the validation of characteristics inherent to semiflexible polymers and networks thereof, i.e., persistence length, inextensibility, reptation, and mesh size scaling. While the scaling of the elastic plateau modulus with concentration G_{0}∝c^{7/5} is consistent with previous measurements and established theories, the emerging persistence length scaling G_{0}∝l_{p} opposes predominant theoretical predictions.

6.
Phys Rev Lett ; 116(10): 108102, 2016 Mar 11.
Article in English | MEDLINE | ID: mdl-27015510

ABSTRACT

Attractive depletion forces between rodlike particles in highly crowded environments have been shown through recent modeling and experimental approaches to induce different structural and dynamic signatures depending on relative orientation between rods. For example, it has been demonstrated that the axial attraction between two parallel rods yields a linear energy potential corresponding to a constant contractile force of 0.1 pN. Here, we extend pairwise, depletion-induced interactions to a multifilament level with actin bundles, and find contractile forces up to 3 pN. Forces generated due to bundle relaxation were not constant, but displayed a harmonic potential and decayed exponentially with a mean decay time of 3.4 s. Through an analytical model, we explain these different fundamental dynamics as an emergent, collective phenomenon stemming from the additive, pairwise interactions of filaments within a bundle.


Subject(s)
Actin Cytoskeleton/physiology , Actins/physiology , Models, Biological , Muscle Contraction/physiology , Optical Tweezers , Linear Models
7.
Polymers (Basel) ; 8(8)2016 Jul 28.
Article in English | MEDLINE | ID: mdl-30974551

ABSTRACT

Bundles and networks of semiflexible biopolymers are key elements in cells, lending them mechanical integrity while also enabling dynamic functions. Networks have been the subject of many studies, revealing a variety of fundamental characteristics often determined via bulk measurements. Although bundles are equally important in biological systems, they have garnered much less scientific attention since they have to be probed on the mesoscopic scale. Here, we review theoretical as well as experimental approaches, which mainly employ the naturally occurring biopolymer actin, to highlight the principles behind these structures on the single bundle level.

SELECTION OF CITATIONS
SEARCH DETAIL
...