Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Imaging ; 9(8)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37623683

ABSTRACT

Knowledge of the relative performance of the well-known sparse and low-rank compressed sensing models with 3D radial quantitative magnetic resonance imaging acquisitions is limited. We use 3D radial T1 relaxation time mapping data to compare the total variation, low-rank, and Huber penalty function approaches to regularization to provide insights into the relative performance of these image reconstruction models. Simulation and ex vivo specimen data were used to determine the best compressed sensing model as measured by normalized root mean squared error and structural similarity index. The large-scale compressed sensing models were solved by combining a GPU implementation of a preconditioned primal-dual proximal splitting algorithm to provide high-quality T1 maps within a feasible computation time. The model combining spatial total variation and locally low-rank regularization yielded the best performance, followed closely by the model combining spatial and contrast dimension total variation. Computation times ranged from 2 to 113 min, with the low-rank approaches taking the most time. The differences between the compressed sensing models are not necessarily large, but the overall performance is heavily dependent on the imaged object.

2.
J Orthop Res ; 41(12): 2657-2666, 2023 12.
Article in English | MEDLINE | ID: mdl-37203565

ABSTRACT

The aim of this study is to assess whether articular cartilage changes in an equine model of post-traumatic osteoarthritis (PTOA), induced by surgical creation of standard (blunt) grooves, and very subtle sharp grooves, could be detected with ex vivo T1 relaxation time mapping utilizing three-dimensional (3D) readout sequence with zero echo time. Grooves were made on the articular surfaces of the middle carpal and radiocarpal joints of nine mature Shetland ponies and osteochondral samples were harvested at 39 weeks after being euthanized under respective ethical permissions. T1 relaxation times of the samples (n = 8 + 8 for experimental and n = 12 for contralateral controls) were measured with a variable flip angle 3D multiband-sweep imaging with Fourier transform sequence. Equilibrium and instantaneous Young's moduli and proteoglycan (PG) content from OD of Safranin-O-stained histological sections were measured and utilized as reference parameters for the T1 relaxation times. T1 relaxation time was significantly (p < 0.05) increased in both groove areas, particularly in the blunt grooves, compared with control samples, with the largest changes observed in the superficial half of the cartilage. T1 relaxation times correlated weakly (Rs ≈ 0.33) with equilibrium modulus and PG content (Rs ≈ 0.21). T1 relaxation time in the superficial articular cartilage is sensitive to changes induced by the blunt grooves but not to the much subtler sharp grooves, at the 39-week timepoint post-injury. These findings support that T1 relaxation time has potential in detection of mild PTOA, albeit the most subtle changes could not be detected.


Subject(s)
Carpal Bones , Cartilage, Articular , Osteoarthritis , Horses , Animals , Magnetic Resonance Imaging/methods , Cartilage, Articular/pathology , Osteoarthritis/diagnostic imaging , Osteoarthritis/etiology , Osteoarthritis/pathology , Wrist Joint , Proteoglycans
3.
Phys Med Biol ; 68(8)2023 04 03.
Article in English | MEDLINE | ID: mdl-36867883

ABSTRACT

Objective.To provide orientation-independent MR parameters potentially sensitive to articular cartilage degeneration by measuring isotropic and anisotropic components ofT2relaxation, as well as 3D fiber orientation angle and anisotropy via multi-orientation MR scans.Approach. Seven bovine osteochondral plugs were scanned with a high angular resolution of thirty-seven orientations spanning 180° at 9.4 T. The obtained data was fitted to the magic angle model of anisotropicT2relaxation to produce pixel-wise maps of the parameters of interest. Quantitative Polarized Light Microscopy (qPLM) was used as a reference method for the anisotropy and fiber orientation.Main results. The number of scanned orientations was found to be sufficient for estimating both fiber orientation and anisotropy maps. The relaxation anisotropy maps demonstrated a high correspondence with qPLM reference measurements of the collagen anisotropy of the samples. The scans also enabled calculating orientation-independentT2maps. Little spatial variation was observed in the isotropic component ofT2while the anisotropic component was much faster in the deep radial zone of cartilage. The estimated fiber orientation spanned the expected 0°-90° in samples that had a sufficiently thick superficial layer. The orientation-independent magnetic resonance imaging (MRI) measures can potentially reflect the true properties of articular cartilage more precisely and robustly.Significance. The methods presented in this study will likely improve the specificity of cartilage qMRI by allowing the assessment of the physical properties such as orientation and anisotropy of collagen fibers in articular cartilage.


Subject(s)
Cartilage, Articular , Animals , Cattle , Cartilage, Articular/diagnostic imaging , Anisotropy , Collagen , Magnetic Resonance Imaging/methods
4.
NMR Biomed ; 36(2): e4834, 2023 02.
Article in English | MEDLINE | ID: mdl-36115012

ABSTRACT

Measurement of the longitudinal relaxation time in the rotating frame of reference (T1ρ ) is sensitive to the fidelity of the main imaging magnetic field (B0 ) and that of the RF pulse (B1 ). The purpose of this study was to introduce methods for producing continuous wave (CW) T1ρ contrast with improved robustness against field inhomogeneities and to compare the sensitivities of several existing and the novel T1ρ contrast generation methods with the B0 and B1 field inhomogeneities. Four hard-pulse and four adiabatic CW-T1ρ magnetization preparations were investigated. Bloch simulations and experimental measurements at different spin-lock amplitudes under ideal and non-ideal conditions, as well as theoretical analysis of the hard-pulse preparations, were conducted to assess the sensitivity of the methods to field inhomogeneities, at low (ω1 << ΔB0 ) and high (ω1 >> ΔB0 ) spin-locking field strengths. In simulations, previously reported single-refocus and new triple-refocus hard-pulse and double-refocus adiabatic preparation schemes were found to be the most robust. The mean normalized absolute deviation between the experimentally measured relaxation times under ideal and non-ideal conditions was found to be smallest for the refocused preparation schemes and broadly in agreement with the sensitivities observed in simulations. Experimentally, all refocused preparations performed better than those that were non-refocused. The findings promote the use of the previously reported hard-pulse single-refocus ΔB0 and B1 insensitive T1ρ as a robust method with minimal RF energy deposition. The double-refocus adiabatic B1 insensitive rotation-4 CW-T1ρ preparation offers further improved insensitivity to field variations, but because of the extra RF deposition, may be preferred for ex vivo applications.


Subject(s)
Image Enhancement , Magnetic Resonance Imaging , Magnetic Resonance Imaging/methods , Image Enhancement/methods , Rotation , Phantoms, Imaging , Image Interpretation, Computer-Assisted/methods
5.
Sci Rep ; 12(1): 12155, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35840627

ABSTRACT

Quantitative MR relaxation parameters vary in the sensitivity to the orientation of the tissue in the magnetic field. In this study, the orientation dependence of multiple relaxation parameters was assessed in various tissues. Ex vivo samples of each tissue type were prepared either from bovine knee (tendon, cartilage) or mouse (brain, spinal cord, heart, kidney), and imaged at 9.4 T MRI with T1, T2, continuous wave (CW-) T1ρ, adiabatic T1ρ and T2ρ, and Relaxation along fictitious field (RAFF2-4) sequences at five different orientations with respect to the main magnetic field. Relaxation anisotropy of the measured parameters was quantified and compared. The highly ordered collagenous tissues, i.e. cartilage and tendon, presented the highest relaxation anisotropy for T2, CW-T1ρ with spin-lock power < 1 kHz, Ad-T2ρ and RAFF2-4. Maximally anisotropy was 75% in cartilage and 30% in tendon. T1 and adiabatic T1ρ did not exhibit observable anisotropy. In the other measured tissue types, anisotropy was overall less than 10% for all the parameters. The results confirm that highly ordered collagenous tissues have properties that induce very clearly observable relaxation anisotropy, whereas in other tissues the effect is not as prominent. Quantitative comparison of anisotropy of different relaxation parameters highlights the importance of sequence choice and design in MR imaging.


Subject(s)
Cartilage, Articular , Magnetic Resonance Imaging , Animals , Anisotropy , Cartilage , Cartilage, Articular/diagnostic imaging , Cattle , Knee Joint , Magnetic Resonance Imaging/methods , Mice , Tendons/diagnostic imaging
6.
Biomed Phys Eng Express ; 8(3)2022 04 05.
Article in English | MEDLINE | ID: mdl-35320794

ABSTRACT

Purpose. The radiology department faces a large number of reconstruction algorithms and kernels during their computed tomography (CT) optimization process. These reconstruction methods are proprietary and ensuring consistent image quality between scanners is becoming increasingly difficult. This study contributes to solving this challenge in CT image quality harmonization by modifying and evaluating a reconstruction algorithm and kernel matching scheme.Methods. The Catphan 600 phantom was scanned with six different CT scanners from four vendors. The phantom was scanned with volumetric CT dose indices (CTDIvols) of 10 mGy and 40 mGy, and the data were reconstructed using 1 mm and 5 mm slices with each combination of reconstruction algorithm, body region kernel, and iterative and deep learning reconstruction strength. A matching scheme developed in previous research, which utilizes the noise power spectrum (NPS) and modulation transfer function (MTF), was modified based on our organization's needs and used to identify the matching reconstruction algorithms and kernels between different scanners.Results. The matching paradigm produced good matching results, and the mean ± standard deviation (median) matching function values for the different acquisition settings were (a value of 1 indicates a perfect match): CTDIvol 10 mGy, 1 mm slice: 0.78 ± 0.31 (0.94); CTDIvol 10 mGy, 5 mm slice: 0.75 ± 0.33 (0.93); CTDIvol 40 mGy, 1 mm slice: 0.81 ± 0.28 (0.95); CTDIvol 40 mGy, 5 mm slice: 0.75 ± 0.33 (0.93). In general, soft reconstruction kernels, i.e., noise-reducing kernels that reduce sharpness, of one vendor were matched with the soft kernels of another vendor, and vice versa for sharper kernels. Conclusions. Combined quantitative assessment of NPS and MTF allows effective strategy for harmonization of technical image quality between different CT scanners. A software was also shared to support CT image quality harmonization in other institutions.


Subject(s)
Algorithms , Tomography, X-Ray Computed , Phantoms, Imaging , Signal-To-Noise Ratio , Tomography Scanners, X-Ray Computed , Tomography, X-Ray Computed/methods
7.
J Biomech ; 126: 110634, 2021 09 20.
Article in English | MEDLINE | ID: mdl-34454206

ABSTRACT

Changes in the fibril-reinforced poroelastic (FRPE) mechanical material parameters of human patellar cartilage at different stages of osteoarthritis (OA) are not known. Further, the patellofemoral joint loading is thought to include more sliding and shear compared to other knee joint locations, thus, the relations between structural and functional changes may differ in OA. Thus, our aim was to determine the patellar cartilage FRPE properties followed by associating them with the structure and composition. Osteochondral plugs (n = 14) were harvested from the patellae of six cadavers. Then, the FRPE material properties were determined, and those properties were associated with proteoglycan content, collagen fibril orientation angle, optical retardation (fibril parallelism), and the state of OA of the samples. The initial fibril network modulus and permeability strain-dependency factor were 72% and 63% smaller in advanced OA samples when compared to early OA samples. Further, we observed a negative association between the initial fibril network modulus and optical retardation (r = -0.537, p < 0.05). We also observed positive associations between 1) the initial permeability and optical retardation (r = 0.547, p < 0.05), and 2) the initial fibril network modulus and optical density (r = 0.670, p < 0.01).These results suggest that the reduced pretension of the collagen fibrils, as shown by the reduced initial fibril network modulus, is linked with the loss of proteoglycans and cartilage swelling in human patellofemoral OA. The characterization of these changes is important to improve the representativeness of knee joint models in tissue and cell scale.


Subject(s)
Cartilage, Articular , Osteoarthritis, Knee , Humans , Knee Joint , Patella , Proteoglycans
8.
J Orthop Res ; 39(4): 861-870, 2021 04.
Article in English | MEDLINE | ID: mdl-32543737

ABSTRACT

Quantitative magnetic resonance (MR) relaxation parameters demonstrate varying sensitivity to the orientation of the ordered tissues in the magnetic field. In this study, the orientation dependence of multiple relaxation parameters was assessed in cadaveric human cartilage with varying degree of natural degeneration, and compared with biomechanical testing, histological scoring, and quantitative histology. Twelve patellar cartilage samples were imaged at 9.4 T MRI with multiple relaxation parameters, including T1 , T2 , CW - T1ρ , and adiabatic T1ρ , at three different orientations with respect to the main magnetic field. Anisotropy of the relaxation parameters was quantified, and the results were compared with the reference measurements and between samples of different histological Osteoarthritis Research Society International (OARSI) grades. T2 and CW - T1ρ at 400 Hz spin-lock demonstrated the clearest anisotropy patterns. Radial zone anisotropy for T2 was significantly higher for samples with OARSI grade 2 than for grade 4. The proteoglycan content (measured as optical density) correlated with the radial zone MRI orientation anisotropy for T2 (r = 0.818) and CW - T1ρ with 400 Hz spin-lock (r = 0.650). Orientation anisotropy of MRI parameters altered with progressing cartilage degeneration. This is associated with differences in the integrity of the collagen fiber network, but it also seems to be related to the proteoglycan content of the cartilage. Samples with advanced OA had great variation in all biomechanical and histological properties and exhibited more variation in MRI orientation anisotropy than the less degenerated samples. Understanding the background of relaxation anisotropy on a molecular level would help to develop new MRI contrasts and improve the application of previously established quantitative relaxation contrasts.


Subject(s)
Cartilage Diseases/diagnostic imaging , Cartilage, Articular/diagnostic imaging , Magnetic Resonance Imaging/methods , Osteoarthritis/diagnostic imaging , Anisotropy , Biomechanical Phenomena , Cadaver , Cartilage Diseases/physiopathology , Cartilage, Articular/physiopathology , Humans , Image Processing, Computer-Assisted , Orientation , Osteoarthritis/physiopathology , Patella , Proteoglycans/chemistry
9.
Sci Rep ; 7(1): 9606, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28852032

ABSTRACT

In highly organized tissues, such as cartilage, tendons and white matter, several quantitative MRI parameters exhibit dependence on the orientation of the tissue constituents with respect to the main imaging magnetic field (B0). In this study, we investigated the dependence of multiple relaxation parameters on the orientation of articular cartilage specimens in the B0. Bovine patellar cartilage-bone samples (n = 4) were investigated ex vivo at 9.4 Tesla at seven different orientations, and the MRI results were compared with polarized light microscopy findings on specimen structure. Dependences of T2 and continuous wave (CW)-T1ρ relaxation times on cartilage orientation were confirmed. T2 (and T2*) had the highest sensitivity to orientation, followed by TRAFF2 and adiabatic T2ρ. The highest dependence was seen in the highly organized deep cartilage and the smallest in the least organized transitional layer. Increasing spin-lock amplitude decreased the orientation dependence of CW-T1ρ. T1 was found practically orientation-independent and was closely followed by adiabatic T1ρ. The results suggest that T1 and adiabatic T1ρ should be preferred for orientation-independent quantitative assessment of organized tissues such as articular cartilage. On the other hand, based on the literature, parameters with higher orientation anisotropy appear to be more sensitive to degenerative changes in cartilage.


Subject(s)
Anisotropy , Magnetic Resonance Imaging , Magnetic Resonance Imaging/methods , Microscopy , Organ Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...