Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Microbiol ; 134(11)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37974045

ABSTRACT

AIMS: Acetic acid bacteria of the genus Bombella have not been reported to produce exopolysaccharides (EPS). In this study, the formation of fructans by B. apis TMW 2.1884 and B. mellum TMW 2.1889 was investigated. METHODS AND RESULTS: Out of eight strains from four different Bombella species, only B. apis TMW 2.1884 and B. mellum TMW 2.1889 showed EPS formation with 50 g l-1 sucrose as substrate. Both EPS were identified as high-molecular weight (HMW) polymers (106-107 Da) by asymmetric flow field-flow fractionation coupled to multi angle laser light scattering and UV detecors (AF4-MALLS/UV) and high performance size exclusion chromatography coupled to MALLS and refractive index detectors (HPSEC-MALLS/RI) analyses. Monosaccharide analysis via trifluoroacetic acid hydrolysis showed that both EPS are fructans. Determination of glycosidic linkages by methylation analysis revealed mainly 2,6-linked fructofuranose (Fruf) units with additional 2,1-linked Fruf units (10%) and 2,1,6-Fruf branched units (7%). No glycoside hydrolase (GH) 68 family genes that are typically associated with the formation of HMW fructans in bacteria could be identified in the genomes. Through heterologous expression in Escherichia coli Top10, an enzyme of the GH32 family could be assigned to the catalysis of fructan formation. The identified fructosyltransferases could be clearly differentiated phylogenetically and structurally from other previously described bacterial fructosyltransferases. CONCLUSIONS: The formation of HMW fructans by individual strains of the genus Bombella is catalyzed by enzymes of the GH32 family. Analysis of the fructans revealed an atypical structure consisting of 2,6-linked Fruf units as well as 2,1-linked Fruf units and 2,1,6-Fruf units.


Subject(s)
Fructans , Sucrose , Fructans/chemistry , Glycoside Hydrolases/genetics , Molecular Weight , Catalysis
2.
Article in English | MEDLINE | ID: mdl-37339070

ABSTRACT

Four strains of members of the genus Bombella were isolated from samples associated with the western honey bee Apis mellifera, which could not be assigned to a species with a validly published name. Strains TMW 2.2543T, TMW 2.2556T, TMW 2.2558T and TMW 2.2559T exhibit in silico DNA-DNA hybridisation (isDDH) and orthologous average nucleotide identity (orthoANI) values below species delineation thresholds compared with all described species of the genus Bombella and with each other. TMW 2.2556T and TMW 2.2558T form their own clade within the genus. The major respiratory quinone of all strains was Q-10. The composition of cellular fatty acids was diverse between strains. All strains stained Gram-negative, were rod-shaped, strictly aerobic, pellicle-forming, catalase-positive, oxidase-negative, mesophilic and grew over a wide pH range; they were halosensitive but glucose-tolerant. Unlike the other studied strains, TMW 2.2558T was non-motile. Phylogenetic, chemotaxonomic and physiological analyses revealed a clear distinction between all the strains and species with validly published names. All the data support the proposition of four novel species within the genus Bombella, namely Bombella pluederhausensis sp. nov., Bombella pollinis sp. nov., Bombella saccharophila sp. nov. and Bombella dulcis sp. nov., with the respective type strains Bombella pluederhausensis sp. nov. TMW 2.2543T (= DSM 114872T, = LMG 32791T), Bombella pollinis sp. nov. TMW 2.2556T (= DSM 114874T, = LMG 32792T), Bombella saccharophila sp. nov. TMW 2.2558T (= DSM 114875T, = LMG 32793T) and Bombella dulcis sp. nov. TMW 2.2559T (= DSM 114877T, = LMG 32794T). Moreover, three genomes available in the NCBI database that have not yet been described as species with validly published names could be assigned to the proposed species. Bombella sp. ESL0378 and Bombella sp. ESL0385 to Bombella pollinis sp. nov. and Bombella sp. AS1 to Bombella saccharophila sp. nov.


Subject(s)
Acetobacteraceae , Fatty Acids , Bees , Animals , Fatty Acids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Base Composition , DNA, Bacterial/genetics , Bacterial Typing Techniques
3.
Microorganisms ; 10(5)2022 May 20.
Article in English | MEDLINE | ID: mdl-35630502

ABSTRACT

It is known that the bacterial microbiota in beehives is essential for keeping bees healthy. Acetic acid bacteria of the genus Bombella colonize several niches in beehives and are associated with larvae protection against microbial pathogens. We have analyzed the genomes of 22 Bombella strains of different species isolated in eight different countries for taxonomic affiliation, central metabolism, prophages, bacteriocins and tetracycline resistance to further elucidate the symbiotic lifestyle and to identify typical traits of acetic acid bacteria. The genomes can be assigned to four different species. Three genomes show ANIb values and DDH values below species demarcation values to any validly described species, which identifies them as two potentially new species. All Bombella spp. lack genes in the Embden-Meyerhof-Parnas pathway and the tricarboxylic acid cycle, indicating a focus of intracellular carbohydrate metabolism on the pentose phosphate pathway or the Entner-Doudoroff pathway for which all genes were identified within the genomes. Five membrane-bound dehydrogenases were identified that catalyze oxidative fermentation reactions in the periplasm, yielding oxidative energy. Several complete prophages, but no bacteriocins, were identified. Resistance to tetracycline, used to prevent bacterial infections in beehives, was only found in Bombella apis MRM1T. Bombella strains exhibit increased osmotolerance in high glucose concentrations compared to Gluconobacter oxydans, indicating adaption to high sugar environments such as beehives.

SELECTION OF CITATIONS
SEARCH DETAIL
...