Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Biochem ; 152(1): 187-93, 1985 Oct 01.
Article in English | MEDLINE | ID: mdl-3930243

ABSTRACT

The stability constants of the 1:1 complexes between Cu2+ and Zn2+ with formate, acetate and several phenylalkanecarboxylates, i.e. C6H5-(CH2)n-COO- with n = 0 to 5, are summarized for water, 50% aqueous ethanol and 50% aqueous dioxane (I = 0.1 M; 25 degrees C): Complex stability depends upon carboxylate group basicity. The influence of varying amounts of ethanol or dioxane (up to 90%) on the stability of the Cu2+ and Zn2+ (M2+) complexes with formate and acetate (CA) was measured by potentiometric pH titrations. The values for pKHH(CA) and log KMM(CA) increase, as expected, with increasing amounts of the organic solvents, i.e. with decreasing solvent polarity. The changes in the equilibrium constants are also evaluated with regard to the mole fractions of the organic solvents and the corresponding dielectric constants. These results may be used to estimate for low dielectric cavities in proteins the equivalent solution dielectric constant on the basis of enhanced carboxylate basicity or metal ion binding capability (method 1). Furthermore, the measured stability constants are used for comparisons of the coordination tendency of carboxylate ligands towards zinc(II)-metalloenzymes (method 2); in this way the equivalent solution dielectric constants in the active-site cavities of bovine carbonic anhydrase and carboxypeptidase A are estimated: the values are of the order of 35 and 70, respectively. This method seems to be generally applicable to metalloproteins.


Subject(s)
Metalloproteins , Binding Sites , Carbonic Anhydrases , Carboxylic Acids , Carboxypeptidases , Chemical Phenomena , Chemistry, Physical , Copper , Electricity , Hydrogen-Ion Concentration , Solvents , Zinc
2.
Eur J Biochem ; 94(2): 523-30, 1979 Mar.
Article in English | MEDLINE | ID: mdl-428398

ABSTRACT

The interaction of 2-amino-2(hydroxymethyl)-1,3-propanediol (Tris) with the metal ions (M2+) Mg2+, Ca2+, Ba2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Pb2+ was studied by potentiometry and spectrophotometry in aqueous solution (I = 0.1 or 1.0 M, KNO3, 25 degrees C). Stability constants of the M(Tris)2+ complexes were determined; those constants which were measured by both methods agreed well. Ternary complexes containing ATP4- as a second ligand were also investigated and it is shown that in the presence of Tris, mixed-ligand complexes of the type M(ATP)(Tris)2- are formed. The values for delta log KM, where delta log KM = log KM(ATP)M(ATP)Tris--log KMM(Tris), are all negative, thus indicating that the interaction of Tris with M(ATP)2- is somewhat less pronounced than with M2+. However, it should be noted that even in mixed-ligand systems complex formation with Tris may still be considerable, hence great reservations should be exercised in employing Tris as a buffer in systems which also contain metal ions. Distributions of the complex species in dependence on pH are shown for several systems, and the structures of the binary M(Tris)2- and the ternary M(ATP)(Tris)2- complexes are discussed. The participation of a Tris-hydroxo group in complex formation is, at least for the M(Tris)2- species, quite evident.


Subject(s)
Adenosine Triphosphate , Tromethamine , Cations, Divalent , Chemical Phenomena , Chemistry , Drug Stability , Kinetics , Ligands
SELECTION OF CITATIONS
SEARCH DETAIL
...