Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Model ; 20(4): 2163, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24633770

ABSTRACT

A novel mechanism for switching a molecular junction based on a proton transfer reaction triggered by an external electrostatic field is proposed. As a specific example to demonstrate the feasibility of the mechanism, the tautomers [2,5-(4-hydroxypyridine)] and {2,5-[4(1H)-pyridone]} are considered. Employing a combination of first-principles electronic structure calculations and Landauer transport theory, we show that both tautomers exhibit very different conductance properties and realize the "on" and "off" states of a molecular switch. Moreover, we provide a proof of principle that both forms can be reversibly converted into each other using an external electrostatic field.


Subject(s)
Electrons , Models, Theoretical , Protons
2.
Phys Rev Lett ; 109(5): 056801, 2012 Aug 03.
Article in English | MEDLINE | ID: mdl-23006194

ABSTRACT

We analyze quantum interference and decoherence effects in single-molecule junctions both experimentally and theoretically by means of the mechanically controlled break junction technique and density-functional theory. We consider the case where interference is provided by overlapping quasidegenerate states. Decoherence mechanisms arising from electronic-vibrational coupling strongly affect the electrical current flowing through a single-molecule contact and can be controlled by temperature variation. Our findings underline the universal relevance of vibrations for understanding charge transport through molecular junctions.

3.
Phys Chem Chem Phys ; 13(32): 14333-49, 2011 Aug 28.
Article in English | MEDLINE | ID: mdl-21776449

ABSTRACT

We show that individual vibrational modes in single-molecule junctions with asymmetric molecule-lead coupling can be selectively excited by applying an external bias voltage. Thereby, a non-statistical distribution of vibrational energy can be generated, that is, a mode with a higher frequency can be stronger excited than a mode with a lower frequency. This is of particular interest in the context of mode-selective chemistry, where one aims to break specific (not necessarily the weakest) chemical bond in a molecule. Such mode-selective vibrational excitation is demonstrated for two generic model systems representing asymmetric molecular junctions and/or scanning tunneling microscopy experiments. To this end, we employ two complementary theoretical approaches, a nonequilibrium Green's function approach and a master equation approach. The comparison of both methods reveals good agreement in describing resonant electron transport through a single-molecule contact, where differences between the approaches highlight the role of non-resonant transport processes, in particular co-tunneling and off-resonant electron-hole pair creation processes.

4.
Phys Rev Lett ; 106(13): 136807, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21517410

ABSTRACT

We carry out experiments on single-molecule junctions at low temperatures, using the mechanically controlled break junction technique. Analyzing the results obtained with various molecules, the nature of the first peak in the differential conductance spectra is elucidated. We observe an electronic transition with a vibronic fine structure, if the first peak occurs at small voltages. This regime can accurately be described by the resonant tunneling model. At higher voltages, additional smearing is observed and no fine structure can be resolved. A detailed analysis of the noise signal indicates that the onset of current is associated with strong fluctuations as a precursor of current flow. The data indicate that a complex fluctuation-driven transport mechanism takes over in this regime.

5.
J Chem Phys ; 135(24): 244506, 2011 Dec 28.
Article in English | MEDLINE | ID: mdl-22225168

ABSTRACT

The multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) theory within second quantization representation of the Fock space, a novel numerically exact methodology to treat many-body quantum dynamics for systems containing identical particles, is applied to study the effect of vibrational motion on electron transport in a generic model for single-molecule junctions. The results demonstrate the importance of electronic-vibrational coupling for the transport characteristics. For situations where the energy of the bridge state is located close to the Fermi energy, the simulations show the time-dependent formation of a polaron state that results in a pronounced suppression of the current corresponding to the phenomenon of phonon blockade. We show that this phenomenon cannot be explained solely by the polaron shift of the energy but requires methods that incorporate the dynamical effect of the vibrations on the transport. The accurate results obtained with the ML-MCTDH in this parameter regime are compared to results of nonequilibrium Green's function theory.

6.
J Chem Phys ; 133(8): 081102, 2010 Aug 28.
Article in English | MEDLINE | ID: mdl-20815551

ABSTRACT

In a nanoscale molecular junction at finite bias voltage, the intramolecular distribution of vibrational energy can strongly deviate from the thermal equilibrium distribution and specific vibrational modes can be selectively excited in a controllable way, regardless of the corresponding mode frequency. This is demonstrated for generic models of asymmetric molecular junctions with localized electronic states, employing a master equation as well as a nonequilibrium Green's function approach. It is shown that the applied bias voltage controls the excitation of specific vibrational modes by tuning the efficiency of vibrational cooling processes due to energy exchange with the leads.

SELECTION OF CITATIONS
SEARCH DETAIL
...