Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 8433, 2023 05 24.
Article in English | MEDLINE | ID: mdl-37225733

ABSTRACT

The hippocampus is affected early in Alzheimer's disease (AD) and altered hippocampal functioning influences normal cognitive aging. Here, we used task-based functional MRI to assess if the APOE ɛ4 allele or a polygenic risk score (PRS) for AD was linked to longitudinal changes in memory-related hippocampal activation in normal aging (baseline age 50-95, n = 292; n = 182 at 4 years follow-up, subsequently non-demented for at least 2 years). Mixed-models were used to predict level and change in hippocampal activation by APOE ɛ4 status and PRS based on gene variants previously linked to AD at p ≤ 1, p < 0.05, or p < 5e-8 (excluding APOE). APOE ɛ4 and PRSp<5e-8 significantly predicted AD risk in a larger sample from the same study population (n = 1542), while PRSp≤1 predicted memory decline. APOE ɛ4 was linked to decreased hippocampal activation over time, with the most prominent effect in the posterior hippocampi, while PRS was unrelated to hippocampal activation at all p-thresholds. These results suggests a link for APOE ɛ4, but not for AD genetics in general, on functional changes of the hippocampi in normal aging.


Subject(s)
Alzheimer Disease , Humans , Middle Aged , Aged , Aged, 80 and over , Alzheimer Disease/genetics , Aging , Alleles , Hippocampus , Apolipoproteins E
2.
Parkinsons Dis ; 2022: 1516807, 2022.
Article in English | MEDLINE | ID: mdl-35818405

ABSTRACT

Objectives: To investigate how age, malnutrition, and the level of plasma cortisol and phosphate in patients with Parkinson's disease (PD) at time of diagnosis are associated with body composition and handgrip strength in males and females compared to controls. Materials & Methods. This cross-sectional study includes baseline data from a cohort of newly diagnosed patients with Parkinson's disease (N = 75; M/F = 41/34) in the New Parkinsonism in Umeå study (NYPUM). Body Impedance (BIS), handgrip strength (HGS) assessments, and evaluation of risk for malnutrition (Mini Nutritional Assessment (MNA) score) and cognitive performance (Mini-Mental State Examination (MMSE)) were performed at time of PD diagnosis. Results: Low fat-free mass index (FFMI), MNA score, and a high Unified Parkinson's Disease Rating Scale (UPDRS-total and UPDRS-III) were associated with high daytime levels of P-cortisol in total PD population but not in controls. Partial correlations reveal that high fat mass percent (FM (%)) and low FFMI were associated with older age in males with PD but not females with PD. Risk of malnutrition was associated with P-cortisol in males but not in females with PD (r = -0.511, P=0.001, and n = 41 and r = -0.055, P=0.759, and n = 34, respectively). Multiple linear regressions show that an interaction between P-cortisol and P-phosphate, older age, and high UPDRS-III score were associated with HGS in total patient population and males but not females. Conclusions: Age- and disease-associated risk factors that decrease muscle mass and HGS and increase FM (%) in patients with PD differ between males and females by an association with levels of cortisol and phosphate.

3.
Bio Protoc ; 11(8): e3983, 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-34124287

ABSTRACT

Odor-detecting olfactory sensory neurons residing in the nasal olfactory epithelium (OE) are the only neurons in direct contact with the external environment. As a result, these neurons are subjected to chemical, physical, and infectious insults, which may be the underlying reason why neurogenesis occurs in the OE of adult mammals. This feature makes the OE a useful model for studying neurogenesis and neuronal differentiation, with the possibility for systemic as well as local administration of various compounds and infectious agents that may interfere with these cellular processes. Several different chemical compounds have been shown to cause toxic injury to the OE, which can be used for OE ablation. We, and others, have found that the systemic administration of the hyperthyroid drug, methimazole, reliably causes olfactotoxicity as a side effect. Here, we outline an OE lesioning protocol for single or repeated ablation by methimazole. A single methimazole administration can be used to study neuroepithelial regeneration and stem cell activation, while repeated ablation and regeneration of OE enable the study of tissue stem cell exhaustion and generation of tissue metaplasia.

4.
J Neurosci ; 40(21): 4116-4129, 2020 05 20.
Article in English | MEDLINE | ID: mdl-32385093

ABSTRACT

The cellular and molecular basis of metaplasia and declining neurogenesis in the aging olfactory epithelium (OE) remains unknown. The horizontal basal cell (HBC) is a dormant tissue-specific stem cell presumed to only be forced into self-renewal and differentiation by injury. Here we analyze male and female mice and show that HBCs also are activated with increasing age as well as non-cell-autonomously by increased expression of the retinoic acid-degrading enzyme CYP26B1. Activating stimuli induce HBCs throughout OE to acquire a rounded morphology and express IP3R3, which is an inositol-1,4,5-trisphosphate receptor constitutively expressed in stem cells of the adjacent respiratory epithelium. Odor/air stimulates CYP26B1 expression in olfactory sensory neurons mainly located in the dorsomedial OE, which is spatially inverse to ventrolateral constitutive expression of the retinoic acid-synthesizing enzyme (RALDH1) in supporting cells. In ventrolateral OE, HBCs express low p63 levels and preferentially differentiate instead of self-renewing when activated. When activated by chronic CYP26B1 expression, repeated injury, or old age, ventrolateral HBCs diminish in number and generate a novel type of metaplastic respiratory cell that is RALDH- and secretes a mucin-like mucus barrier protein (FcγBP). Conversely, in the dorsomedial OE, CYP26B1 inhibits injury-induced and age-related replacement of RALDH- supporting cells with RALDH1+ ciliated respiratory cells. Collectively, these results support the concept that inositol-1,4,5-trisphosphate type 3 receptor signaling in HBCs, together with altered retinoic acid metabolism within the niche, promote HBC lineage commitment toward two types of respiratory cells that will maintain epithelial barrier function once the capacity to regenerate OE cells ceases.SIGNIFICANCE STATEMENT Little is known about signals that activate dormant stem cells to self-renew and regenerate odor-detecting neurons and other olfactory cell types after loss due to injury, infection, or toxin exposure in the nose. It is also unknown why the stem cells do not prevent age-dependent decline of odor-detecting neurons. We show that (1) stem cells are kept inactive by the vitamin A derivative retinoic acid, which is synthesized and degraded locally by olfactory cells; (2) old age as well as repeated injuries activate the stem cells and exhaust their potential to produce olfactory cells; and (3) exhausted stem cells alter the local retinoic acid metabolism and maintain the epithelial tissue barrier by generating airway cells instead of olfactory cells.


Subject(s)
Aging/metabolism , Isotretinoin/pharmacology , Neural Stem Cells/metabolism , Olfactory Receptor Neurons/metabolism , Retinoic Acid 4-Hydroxylase/metabolism , Animals , Female , Male , Metaplasia/metabolism , Mice , Neural Stem Cells/drug effects , Neurogenesis/drug effects , Neurogenesis/physiology , Olfactory Mucosa/drug effects , Olfactory Mucosa/metabolism , Olfactory Receptor Neurons/drug effects
5.
J Neurosci ; 35(40): 13807-18, 2015 Oct 07.
Article in English | MEDLINE | ID: mdl-26446231

ABSTRACT

Stimulus-dependent expression of the retinoic acid-inactivating enzyme Cyp26B1 in olfactory sensory neurons (OSNs) forms a dorsomedial (DM)-ventrolateral (VL) gradient in the mouse olfactory epithelium. The gradient correlates spatially with different rates of OSN turnover, as well as the functional organization of the olfactory sensory map, into overlapping zones of OSNs that express different odorant receptors (ORs). Here, we analyze transgenic mice that, instead of a stimulus-dependent Cyp26B1 gradient, have constitutive Cyp26B1 levels in all OSNs. Starting postnatally, OSN differentiation is decreased and progenitor proliferation is increased. Initially, these effects are selective to the VL-most zone and correlate with reduced ATF5 expression and accumulation of OSNs that do not express ORs. Transcription factor ATF5 is known to stabilize OR gene choice via onset of the stimulus-transducing enzyme adenylyl cyclase type 3. During further postnatal development of Cyp26B1 mice, an anomalous DM(high)-VL(low) expression gradient of adenylyl cyclase type 3 appears, which coincides with altered OR frequencies and OR zones. All OR zones expand ventrolaterally except for the VL-most zone, which contracts. The expansion results in an increased zonal overlap that is also evident in the innervation pattern of OSN axon terminals in olfactory bulbs. These findings together identify a mechanism by which postnatal sensory-stimulated vitamin A metabolism modifies the generation of spatially specified neurons and their precise topographic connectivity. The distributed patterns of vitamin A-metabolizing enzymes in the nervous system suggest the possibility that the mechanism may also regulate neuroplasticity in circuits other than the olfactory sensory map. SIGNIFICANCE STATEMENT: The mouse olfactory sensory map is functionally wired according to precise axonal projections of spatially organized classes of olfactory sensory neurons in the nose. The genetically controlled mechanisms that regulate the development of the olfactory sensory map are beginning to be elucidated. Little is known about mechanisms by which sensory stimuli shape the organization of the map after birth. We show that a stimulus-dependent gradient of a retinoic acid-inactivating enzyme Cyp26B1 modifies the composition, localization, and axonal projections of olfactory sensory neuron classes. The mechanism is novel and suggests the interesting possibility that local vitamin A metabolism could also be a mediator of stimulus-dependent modifications of precise spatial connectivity in other parts of the nervous system.


Subject(s)
Brain Mapping , Cytochrome P-450 Enzyme System/metabolism , Gene Expression Regulation/physiology , Olfactory Mucosa/cytology , Sensory Receptor Cells/physiology , Activating Transcription Factors/metabolism , Age Factors , Aldehyde Dehydrogenase 1 Family , Animals , Animals, Newborn , Benzoquinones/metabolism , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cytochrome P-450 Enzyme System/genetics , Gene Expression Regulation/genetics , Histones/metabolism , Isoenzymes/metabolism , Keratolytic Agents/pharmacology , Mice , Mice, Transgenic , Neural Cell Adhesion Molecules/metabolism , Olfactory Marker Protein/metabolism , Retinal Dehydrogenase/metabolism , Retinoic Acid 4-Hydroxylase , Sensory Receptor Cells/drug effects , Tretinoin/pharmacology , beta-Galactosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...