Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Science ; 324(5928): 723; author reply 724-5, 2009 May 08.
Article in English | MEDLINE | ID: mdl-19423802
2.
Sci Total Environ ; 407(2): 899-916, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-19004470

ABSTRACT

In this work a general, process-based mass-balance model for water contaminants for coastal areas at the ecosystem scale (CoastMab) is presented and for the first time tested for radionuclides. The model is dynamic, based on ordinary differential equations and gives monthly predictions. Connected to the core model there is also a sub-model for contaminant concentrations in fish. CoastMab calculates sedimentation, resuspension, diffusion, mixing, burial and retention of the given contaminant. The model contains both general algorithms, which apply to all contaminants, and substance-specific parts (such as algorithms for the particulate fraction, diffusion, biouptake and biological half-life). CoastMab and the sub-model for fish are simple to apply in practice since all driving variables may be readily accessed from maps or regular monitoring programs. The separation between the surface-water layer and the deep-water layer is not done as in most traditional models from water temperature data but from sedimentological criteria. Previous versions of the models for phosphorus and suspended particulate matter (in the Baltic Sea) have been validated and shown to predict well. This work presents modifications of the model and tests using two tracers, radiocesium and radiostrontium (from the Chernobyl fallout) in the Dnieper-Bug estuary (the Black Sea). Good correlations are shown between modeled and empirical data, except for the month directly after the fallout. We have, e.g., shown that: 1. The conditions in the sea outside the bay are important for the concentrations of the substances in water, sediments and fish within the bay, 2. We have demonstrated "biological," "chemical" and "water" dilution, 3. That the water chemical conditions in the bay influence biouptake and concentrations in fish of the radionuclides and 4. That the feeding behaviour of the coastal fish is very important for the biouptake of the radionuclides.


Subject(s)
Environmental Monitoring , Geologic Sediments/analysis , Radioactive Fallout/analysis , Radioisotopes/analysis , Soil Pollutants, Radioactive/analysis , Water Pollutants, Radioactive/analysis , Wetlands , Algorithms , Animals , Cesium Radioisotopes/analysis , Chernobyl Nuclear Accident , Fishes/metabolism , Forecasting , Geologic Sediments/chemistry , Models, Biological , Oceans and Seas , Russia , Strontium Radioisotopes/analysis , Time Factors , Ukraine
4.
J Environ Manage ; 86(3): 498-519, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17275160

ABSTRACT

The aim of this work is (1) to discuss approaches and tools to set management goals using operational indicators for coastal management (i.e., indicators that are easy to measure, understand and predict) and validated predictive models and (2) to discuss remedial strategies for sustainable coastal management regarding water quality and the abundance of fish, waterfowl and large aquatic plants. These approaches are exemplified using data from Ringkøbing Fjord, Denmark, which has undergone two major regime shifts during the last decades. This work discusses the changes taken place during the period from 1980 to 2004 (when there are good empirical data). For Ringkøbing Fjord, which is a very shallow, well-oxygenated lagoon dominated by resuspension processes, we have targeted on the following operational indicators, which are meant to reflect seasonal median values for the entire defined coastal area (the ecosystem scale) and not conditions at individual sites or data from shorter time periods: Secchi depth (as a standard measure of water clarity) and chlorophyll-a concentrations (as a key measure of algal biomass). The operational indicators are regulated by a set of standard abiotic factors, such as salinity, suspended particulate matter (SPM), nutrient concentrations (N and P), coastal morphometry and water exchange. Such relationships are quantified using well-tested, general quantitative models, which illustrate how these indicators are interrelated and how they reflect fundamental aspects of coastal ecosystems. We demonstrate that the regime shift in the lagoon can be modelled and quantitatively explained and is related to changes in salinity and nutrient inflow. A very important threshold is linked to increased salinities in the lagoon. For example, when the mean annual salinity is higher than about 9.5 per thousand, large numbers of saltwater species of clams can survive and influence the structure and function of the ecosystem in profound ways. The model also illustrates the dynamic response to changes in nutrient loading. We have presented several management strategies with the goal of keeping the Secchi depth at 2m, which would stimulate the growth of higher aquatic plants, which are fundamental for fish production and bird abundance in the lagoon. Given the fact that the Secchi depth depends on many variable factors (temperature, TP-inflow from land, salinity, changes in biomasses of macrophytes and clams, which are accounted for in these simulations), our results indicate that in practice it will likely be very difficult to reach that goal. However, it would be realistic to maintain a Secchi depth of 1.5m if the variability in salinity is minimized and the mean salinity is kept at about 10.2%.


Subject(s)
Biomass , Ecosystem , Environmental Monitoring/methods , Models, Theoretical , Seawater/analysis , Water Pollution/prevention & control , Animals , Chlorophyll/analysis , Chlorophyll A , Conservation of Natural Resources , Denmark , Eukaryota/growth & development , Eukaryota/metabolism , Nephelometry and Turbidimetry , Nitrogen/analysis , Phosphorus/analysis , Phytoplankton/growth & development , Phytoplankton/metabolism , Plant Development , Plants/metabolism , Seasons , Sodium Chloride/analysis , Water Pollution/analysis
5.
Sci Total Environ ; 379(1): 89-108, 2007 Jun 15.
Article in English | MEDLINE | ID: mdl-17448525

ABSTRACT

This study aims at bridging the gap between freshwater and marine eutrophication studies by presenting (1) a cross-system analysis of the relationship between chlorophyll and the total nitrogen (TN) to total phosphorus (TP) ratio (2) a general model to predict concentrations of cyanobacteria from data on TP, the TN/TP ratio, salinity and temperature, and (3) a general trophic level classification for aquatic systems based on chlorophyll classes (for oligo-, meso-, eu- and hypertrophic systems). The data compiled in this study concerns more than 500 lakes and coastal areas covering a very wide domain in terms of nutrient concentrations and salinity. There was no simple relationship between the TN/TP ratio and empirical chlorophyll concentrations or concentrations of cyanobacteria. Variations in TP rather than TN generally seem to be more important to predict variations among systems in chlorophyll-a and cyanobacteria. Different "bioavailable" forms of the nutrients (DIN, DIP, phosphate, nitrate, etc.) have been shown to have very high coefficients of variation (CV), which means that many samples are needed to obtain reliable empirical data which are necessary in models aiming for high predictive power and practical usefulness.


Subject(s)
Chlorophyll/analysis , Cyanobacteria/isolation & purification , Nitrogen/analysis , Phosphorus/analysis , Water Microbiology , Biomass , Colony Count, Microbial , Eutrophication , Forecasting , Fresh Water/analysis , Fresh Water/microbiology , Seawater/analysis , Seawater/microbiology , Sodium Chloride/analysis , Temperature
6.
Mar Environ Res ; 60(2): 211-43, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15757750

ABSTRACT

The aim of this work is to review studies to evaluate how emissions from fish cage farms cause eutrophication effects in marine environments. The focus is on four different scales: (i) the conditions at the site of the farm, (ii) the local scale related to the coastal area where the farm is situated, (iii) the regional scale encompassing many coastal areas and (iv) the international scale including several regional coastal areas. The aim is to evaluate the role of nutrient emissions from fish farms in a general way, but all selected examples come from the Baltic Sea. An important part of this evaluation concerns the method to define the boundaries of a given coastal area. If this is done arbitrarily, one would obtain arbitrary results in the environmental consequence analysis. In this work, the boundary lines between the coast and the sea are drawn using GIS methods (geographical information systems) according to the topographical bottleneck method, which opens a way to determine many fundamental characteristics in the context of mass balance calculations. In mass balance modelling, the fluxes from the fish farm should be compared to other fluxes to, within and from coastal areas. Results collected in this study show that: (1) at the smallest scale (<1 ha), the "footprint" expressing the impact areas of fish cage farm often corresponds to the size of a "football field" (50-100 m) if the annual fish production is about 50 ton, (2) at the local scale (1 ha to 100 km2), there exists a simple load diagram (effect-load-sensitivity) to relate the environmental response and effects from a specific load from a fish cage farm. This makes it possible to obtain a first estimate of the maximum allowable fish production in a specific coastal area, (3) at the regional scale (100-10,000 km2), it is possible to create negative nutrient fluxes, i.e., use fish farming as a method to reduce the nutrient loading to the sea. The breaking point is to use more than about 1.1 g wet weight regionally caught wild fish per gram feed for the cultivated fish, and (4) at the international scale (>10,000 km2) related to the Baltic Proper, the contribution from fish farms to the overall nutrient fluxes are very small. We have also given two case-studies at the local scale where the impact of the fish farm emissions are greatest and the idea is to identify coastal areas unsuitable and suitable for fish cage farms and the reasons why. It should also be stressed that the results presented here are exemplified using emissions from fish farms, but that the underlying principles to evaluate the ecosystem effects of nutrient discharges from point source emissions are valid in a wider and more general perspective.


Subject(s)
Aquaculture/methods , Environment , Eutrophication/drug effects , Fishes , Models, Theoretical , Water Pollutants, Chemical/toxicity , Animals , Aquaculture/statistics & numerical data , Geographic Information Systems , Geography , Nitrogen/analysis , Oceans and Seas , Phosphates/analysis , Water Movements
7.
J Environ Radioact ; 80(3): 357-82, 2005.
Article in English | MEDLINE | ID: mdl-15725508

ABSTRACT

This paper presents a new general, process-based river model for substances such as radionuclides from single pulse fallouts. The new model has been critically tested using data from 13 European rivers contaminated by radiocesium from the Chernobyl accident. This modelling approach gives radionuclide concentrations in water (total, dissolved and particulate phases; and also concentrations in sediments and fish, but the latter aspects are not discussed in this paper) at defined river sites. The model is based on processes in the upstream river stretch and in the upstream catchment area. The catchment area is differentiated into inflow ( approximately dry land) areas and outflow ( approximately wetland) areas. The model also accounts for time-dependent fixation of substances in the catchment. The catchment area sub-model is based on a previous catchment model, which has been tested with very good results for radiocesium, radiostrontium and Ca-concentrations (from liming operations). The new river model is simple to apply in practice since all driving variables may be readily accessed from maps and standard monitoring programs. The driving variables are: latitude, altitude, continentality, catchment area, mean annual precipitation, soil type (percentages or organic and sandy soils), fallout and month of fallout. Modelled values have been compared to independent empirical data from 10 rivers sites (91 data on radiocesium in water) covering a wide domain (catchment areas from 4000 to 180 000 km(2), precipitation from 500 to 960 mm/yr and fallout from 1700 to 660 000 Bq/m(2)). The new model predicts very well--when modelled values are compared to empirical data, the slope is perfect (1.0) and the r(2)-value is 0.90. This is good giving the fact that there are also uncertainties in the empirical data, which set a limit to the achieved predictive power, as expressed by the r(2)-value.


Subject(s)
Models, Theoretical , Radioactive Fallout , Radioisotopes/analysis , Rivers , Water Pollutants, Radioactive/analysis , Forecasting , Water Movements
8.
J Environ Radioact ; 78(2): 217-45, 2005.
Article in English | MEDLINE | ID: mdl-15511560

ABSTRACT

This paper presents a general, process-based dynamic model for coastal areas for radionuclides (metals, organics and nutrients) from both single pulse fallout and continuous deposition. The model gives radionuclide concentrations in water (total, dissolved and particulate phases and concentrations in sediments and fish) for entire defined coastal areas. The model gives monthly variations. It accounts for inflow from tributaries, direct fallout to the coastal area, internal fluxes (sedimentation, resuspension, diffusion, burial, mixing and biouptake and retention in fish) and fluxes to and from the sea outside the defined coastal area and/or adjacent coastal areas. The fluxes of water and substances between the sea and the coastal area are differentiated into three categories of coast types: (i) areas where the water exchange is regulated by tidal effects; (ii) open coastal areas where the water exchange is regulated by coastal currents; and (iii) semi-enclosed archipelago coasts. The coastal model gives the fluxes to and from the following four abiotic compartments: surface water, deep water, ET areas (i.e., areas where fine sediment erosion and transport processes dominate the bottom dynamic conditions and resuspension appears) and A-areas (i.e., areas of continuous fine sediment accumulation). Criteria to define the boundaries for the given coastal area towards the sea, and to define whether a coastal area is open or closed are given in operational terms. The model is simple to apply since all driving variables may be readily accessed from maps and standard monitoring programs. The driving variables are: latitude, catchment area, mean annual precipitation, fallout and month of fallout and parameters expressing coastal size and form as determined from, e.g., digitized bathymetric maps using a GIS program. Selected results: the predictions of radionuclide concentrations in water and fish largely depend on two factors, the concentration in the sea outside the given coastal area and/or adjacent coastal areas and the ecological half-life of the radionuclide in the sea. Uncertainties in these factors generally dominate all other uncertainties, e.g., concerning the surface water retention time, the settling velocity of the particulate fraction, the distribution coefficient regulating the fluxes in dissolved and particulate phases, the catchment area influences and the factors regulating biouptake and excretion of the radionuclide in fish. This means that the conditions in the sea are of paramount importance for the conditions in the coastal area, even for relatively enclosed coastal areas. This coastal model may be regarded as a tool for testing working hypotheses on the relative roles of different processes in different coastal areas. Such information is essential for getting realistic expectations of various remedial measures, such as coastal dredging discussed in this work.


Subject(s)
Fishes , Geologic Sediments/analysis , Radioisotopes/analysis , Seawater/analysis , Water Pollutants, Radioactive/analysis , Algorithms , Animals , Fishes/metabolism , Forecasting , Models, Theoretical , Radiation Monitoring/methods , Radioisotopes/metabolism , Rivers/chemistry , Seasons
9.
J Environ Radioact ; 79(3): 273-96, 2005.
Article in English | MEDLINE | ID: mdl-15607515

ABSTRACT

The present paper summarises the results of the review and assessment of state-of-the-art models developed for predicting the migration of radionuclides through rivers. The different approaches of the models to predict the behaviour of radionuclides in lotic ecosystems are presented and compared. The models were classified and evaluated according to their main methodological approaches. The results of an exercise of model application to specific contamination scenarios aimed at assessing and comparing the model performances were described. A critical evaluation and analysis of the uncertainty of the models was carried out. The main factors influencing the inherent uncertainty of the models, such as the incompleteness of the actual knowledge and the intrinsic environmental and biological variability of the processes controlling the behaviour of radionuclides in rivers, are analysed.


Subject(s)
Models, Theoretical , Radioisotopes , Water Pollutants, Radioactive , Decision Making , Forecasting , Reproducibility of Results , Sensitivity and Specificity , Water Movements
10.
J Environ Radioact ; 77(3): 247-73, 2004.
Article in English | MEDLINE | ID: mdl-15381320

ABSTRACT

This paper presents a new general sub-model for fixation in catchment areas to be used within the framework of a river model for substances such as radionuclides and metals from continuous and single-pulse fallouts. The model has been critically tested using data from 27 European river sites covering a very wide geographical area and contaminated by radiocesium and radiostrontium from the Chernobyl accident and from the nuclear weapons tests (NWT fallout). This modelling approach gives radionuclide concentrations in water (total, dissolved and particulate phases) at defined sites on a monthly basis. The overall river model is based on processes in the upstream river stretch and in the catchment area. The catchment area is differentiated into inflow (approximately dry land) areas and outflow (approximately wetland) areas. The model has a general structure, which can be used for all radionuclides or substances. It is simple to apply in practice since all driving variables may be readily accessed from maps and standard monitoring programs. The driving variables are: latitude, altitude, catchment area, mean annual precipitation and fallout. Note that for large catchments, this model does not require data on the characteristic soil type or the percentage of outflow areas (wet lands) in the catchment, as in most previous models, since in practice it is very difficult to obtain reliable data on characteristic soil type or percentage of outflow areas, especially in large and topographically complex catchments. Modelled values have been compared to empirical data from rivers sites covering a wide domain (catchment areas from 3000 to 3,000,000 km2, precipitation from 400 to 1700 mm/year; fallouts from 1600 to 280,000 Bq/m2; altitudes from 0 to 1000 m.a.s.l. and latitudes from 41 degrees to 72 degrees N). The river model with its sub-model for fixation predicts close to the uncertainty factors given by the empirical data, which have been shown to be about a factor of 1.6 for 137Cs and a factor of 2.2 for 90Sr in river water. The obtained characteristic uncertainty factors for 137Cs from the Chernobyl fallout is 2.4, for 137Cs from the NWT fallout it is 1.3 and for the 90Sr results from the NWT fallout it is 3 using the new model.


Subject(s)
Models, Theoretical , Radioactive Fallout/analysis , Rivers/chemistry , Water Pollutants, Radioactive/analysis , Catchment Area, Health/statistics & numerical data , Cesium Radioisotopes/analysis , Chernobyl Nuclear Accident , Europe , Nuclear Warfare , Radiation Monitoring/methods , Rain , Snow , Soil Pollutants, Radioactive/analysis , Strontium Radioisotopes/analysis , Uncertainty , Water Movements
11.
J Environ Radioact ; 75(1): 83-103, 2004.
Article in English | MEDLINE | ID: mdl-15149763

ABSTRACT

The present paper summarises the results of the review and assessment of models developed for predicting the migration of radionuclides from catchments to water bodies. The models were classified and evaluated according to their main methodological approaches. A retrospective analysis of the principles underpinning the model development in relation to experimental finding and results was carried out. It was demonstrated that most of the various conceptual approaches of different modellers can be integrated in a general, harmonised perspective supported by a variety of experimental evidences. Shortcomings and advantages of the models were discussed.


Subject(s)
Models, Theoretical , Radioisotopes , Water Pollutants, Radioactive/analysis , Forecasting , Retrospective Studies , Water Movements , Water Supply
12.
J Environ Radioact ; 73(3): 267-87, 2004.
Article in English | MEDLINE | ID: mdl-15050360

ABSTRACT

This paper addresses some fundamental problems related to the structure and function of catchment areas in general and for seasonal (weekly, monthly) mass balance calculations of radionuclides (and metals, organics and nutrients) in particular. A new catchment area model has been developed and critically tested. This modelling approach is based on mechanistic principles. The catchment area is differentiated into inflow ( approximately dry land) areas and outflow (=wetland) areas. The model also accounts for time-dependent fixation of substances in the catchment related to single-pulse fallouts. The model has a general structure. It is simple to use since there are only two soil type classes and three categories for the outflow areas. In critical tests, the model was put within a framework where it is intended, i.e., within a more comprehensive lake model. Radiocesium was used as a tracer in these tests. Modelled values were compared to empirical data from 23 lakes (351 data on (137)Cs in water, as well as in sediments, small fish and on suspended particles) covering a very wide limnological domain (latitudes from 42 to 61 degrees V, altitudes from 0 to 1090 m ASL, catchment areas from 0.17 to 114,700 km(2), precipitation from 430 to 1840 mm/year, lake areas from 0.042 to 1147 km(2), mean depths from 1.1 to 90 m, pH from 5.1 to 9 units, potassium concentrations from 0.23 to 27.5 mg/l, total P concentrations from 8.3 to 100 microg/l and theoretical water retention times from 0.02 to 137 years). When modelled values were compared to empirical data, the slope was almost perfect (0.99) as well as the coefficient of determination (r2 = 0.96).


Subject(s)
Models, Theoretical , Soil Pollutants, Radioactive/analysis , Water Pollutants, Radioactive/analysis , Cesium Radioisotopes/analysis , Environmental Monitoring , Seasons , Water Movements , Water Supply
13.
J Environ Radioact ; 69(3): 177-205, 2003.
Article in English | MEDLINE | ID: mdl-12832158

ABSTRACT

A variety of models for predicting the behaviour of radionuclides in fresh water ecosystems have been developed and tested during recent decades within the framework of many international research projects. These models have been implemented in Computerised Decision Support Systems (CDSS) for assisting the appropriate management of fresh water bodies contaminated by radionuclides. The assessment of the state-of-the-art and the consolidation of these CDSSs has been envisaged, by the scientific community, as a primary necessity for the rationalisation of the sector. The classification of the approaches of the various models, the determination of their essential features, the identification of similarities and differences among them and the definition of their application domains are all essential for the harmonisation of the existing CDSSs and for the possible development and improvement of reference models that can be widely applied in different environmental conditions. The present paper summarises the results of the assessment and evaluation of models for predicting the behaviour of radionuclides in lacustrine ecosystems. Such models were developed and tested within major projects financed by the European Commission during its 4th Framework Programme (1994-1998). The work done during the recent decades by many modellers at an international level has produced some consolidated results that are widely accepted by most experts. Nevertheless, some new results have arisen from recent studies and certain model improvements are still necessary.


Subject(s)
Decision Making, Computer-Assisted , Geologic Sediments/chemistry , Models, Theoretical , Radioisotopes/analysis , Water Supply , Ecosystem , Forecasting
14.
J Environ Radioact ; 65(1): 47-75, 2003.
Article in English | MEDLINE | ID: mdl-12683728

ABSTRACT

This work has identified the characteristics regulating lake sensitivity to 90Sr-contamination and why certain lakes are likely to respond positively to lake liming (Ca-treatment) and when this would not be a feasible or economic remedial measure to lower 90Sr-levels in fish. The results demonstrate that liming would work best in (1) small, (2) low-productive, (3) oligohumic, (4) acid lakes with (5) low initial Ca-concentrations. It is important to start the liming as soon as possible after the fallout. The liming model discussed in this work can be used to calculate the changes in lake Ca-concentrations and the duration of the liming. The Sr-model can be used to calculate changes in Sr-levels in water, sediments and fish. At best, these simulations indicate that it is realistic to expect that lake liming can reduce peak levels of 90Sr in fish by 25-40%.


Subject(s)
Calcium Compounds/chemistry , Oxides/chemistry , Radioactive Fallout , Water Pollutants, Radioactive/analysis , Water Purification/methods , Water Supply , Animals , Ecosystem , Fishes , Strontium Radioisotopes/chemistry
15.
J Environ Radioact ; 60(3): 319-50, 2002.
Article in English | MEDLINE | ID: mdl-12054044

ABSTRACT

This paper presents results of a model test carried out within the framework of the COMETES project (EU). The aim of the work was to change the structure of the MOIRA lake model for radiocesium so that it can be applied more generally for, in principle, all types of radionuclides and heavy metals. This general lake model is used within the MOIRA decision support system (DSS; MOIRA and COMETES are acronyms for EU-projects). The model is based on a set of differential equations and a specific modelling structure. It incorporates all important fluxes to, from and within lakes in a general manner. Yet the model is driven by a minimum of variables accessible from standard maps and monitoring programs. The model can be separated into two parts, a general part with equations applicable for all types of water pollutants and a substance-specific part. This model has previously been validated for 137Cs from many lakes covering a wide domain and yielded excellent predictive power. The alterations discussed in this work are meant to be general and radiostrontium is used as a typical element. Radiostrontium is known to be more mobile than radiocesium and all abiotic parts of the model handling fixation and mobility have been altered. The new model for 90Sr has been critically tested using data from four lakes heavily contaminated with 90Sr from the Kyshtym accident in the Southern Urals, Russia, using empirical data from a period from 1958 to 1995 for 90Sr in fish (here goldfish), water and sediments.


Subject(s)
Models, Theoretical , Radioactive Fallout , Radioactive Hazard Release , Water Pollutants, Radioactive/analysis , Cesium Radioisotopes/analysis , Environmental Monitoring , Forecasting , Russia , Strontium Radioisotopes/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...