Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Zookeys ; 852: 125-136, 2019.
Article in English | MEDLINE | ID: mdl-31210747

ABSTRACT

This dataset provides information about infestation caused by the pine processionary moth (Thaumetopoeapityocampa ([Denis & Schiffermüller], 1775)) in pure or mixed pine woodlands and plantations in Andalusia. It represents a long-term series (1993-2015) containing 81,908 records that describe the occurrence and incidence of this species. Data were collected within a monitoring programme known as COPLAS, developed by the Regional Ministry of Environment and Territorial Planning of the Andalusian Regional Government within the frame of the Plan de Lucha Integrada contra la Procesionaria del Pino (Plan for Integrated Control Against the Pine Processionary Moth). In particular, this dataset includes 4,386 monitoring stands which, together with the campaign year, define the dataset events in Darwin Core Archive. Events are related with occurrence data which show if the species is present or absent. In turn, the event data have a measurement associated: degree of infestation.

2.
PeerJ ; 7: e6530, 2019.
Article in English | MEDLINE | ID: mdl-30842907

ABSTRACT

Prolonged diapause occurs in a number of insects and is interpreted as a way to evade adverse conditions. The winter pine processionary moths (Thaumetopoea pityocampa and Th. wilkinsoni) are important pests of pines and cedars in the Mediterranean region. They are typically univoltine, with larvae feeding across the winter, pupating in spring in the soil and emerging as adults in summer. Pupae may, however, enter a prolonged diapause with adults emerging one or more years later. We tested the effect of variation in winter temperature on the incidence of prolonged diapause, using a total of 64 individual datasets related to insect cohorts over the period 1964-2015 for 36 sites in seven countries, covering most of the geographic range of both species. We found high variation in prolonged diapause incidence over their ranges. At both lower and upper ends of the thermal range in winter, prolonged diapause tended to be higher than at intermediate temperatures. Prolonged diapause may represent a risk-spreading strategy to mitigate climate uncertainty, although it may increase individual mortality because of a longer exposure to mortality factors such as predation, parasitism, diseases or energy depletion. Climate change, and in particular the increase of winter temperature, may reduce the incidence of prolonged diapause in colder regions whereas it may increase it in warmer ones, with consequences for population dynamics.

3.
J Chem Ecol ; 45(1): 95-105, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30523519

ABSTRACT

Stress caused by parasitic plants, e.g. mistletoes, alters certain host-plant traits as a response. While several physical implications of the parasite-host relation have been well studied, shifts in the host chemical profile remain poorly understood. Here we compare the chemical profiles of mistletoe (Viscum album subsp. austriacum) leaves and host pine (Pinus nigra subsp. salzmannii) needles and we investigate chemical changes in host needles of trees with different parasite loads (control, low, medium, and high). Our results reveal that despite the intimate contact between mistletoe and host pine, their chemical profiles differed significantly, revealing extremely low concentrations of defense compounds (including a complete lack of terpenes) and high levels of N concentrations in mistletoe leaves. On the other hand, parasitized pines showed unique chemical responses depending on parasite loads. Overall, the content in monoterpenes increased with parasitism. Higher parasitized pines produced higher amounts of defense compounds (phenols and condensed tannins) than less parasitized trees, but amounts in samples of the same year did not significantly differ between parasitized and unparasitized pines. Highly parasitized pines accumulated less N than pines with other parasite loads. The strongest response was found in sesqui- and diterpenes, which were at lower levels in pines under medium and high parasitism. Chemical responses of pines to mistletoe parasitism resembled reactions to other kinds of stress. Low levels induced reactions resembling those against drought stress, while medium and high parasitism elicited responses comparable to those against burning and defoliation.


Subject(s)
Host-Parasite Interactions , Pinus/chemistry , Pinus/parasitology , Viscum album/chemistry , Viscum album/physiology , Parasite Load , Phenols/analysis , Phenols/metabolism , Pinus/physiology , Proanthocyanidins/analysis , Proanthocyanidins/metabolism , Terpenes/analysis , Terpenes/metabolism
4.
Ecol Evol ; 6(13): 4372-86, 2016 07.
Article in English | MEDLINE | ID: mdl-27386082

ABSTRACT

The debate whether the coevolution of plants and insects or macroevolutionary processes (phylogeny) is the main driver determining the arsenal of molecular defensive compounds of plants remains unresolved. Attacks by herbivorous insects affect not only the composition of defensive compounds in plants but also the entire metabolome. Metabolomes are the final products of genotypes and are constrained by macroevolutionary processes, so closely related species should have similar metabolomic compositions and may respond in similar ways to attacks by folivores. We analyzed the elemental compositions and metabolomes of needles from three closely related Pinus species with distant coevolutionary histories with the caterpillar of the processionary moth respond similarly to its attack. All pines had different metabolomes and metabolic responses to herbivorous attack. The metabolomic variation among the species and the responses to folivory reflected their macroevolutionary relationships, with P. pinaster having the most divergent metabolome. The concentrations of terpenes were in the attacked trees supporting the hypothesis that herbivores avoid plant individuals with higher concentrations. Our results suggest that macroevolutionary history plays important roles in the metabolomic responses of these pine species to folivory, but plant-insect coevolution probably constrains those responses. Combinations of different evolutionary factors and trade-offs are likely responsible for the different responses of each species to folivory, which is not necessarily exclusively linked to plant-insect coevolution.

5.
PLoS One ; 8(3): e59824, 2013.
Article in English | MEDLINE | ID: mdl-23555794

ABSTRACT

Global change triggers shifts in forest composition, with warming and aridification being particularly threatening for the populations located at the rear edge of the species distributions. This is the case of Scots pine (Pinus sylvestris) in the Mediterranean Basin where uncertainties in relation to its dynamics under these changing scenarios are still high. We analysed the relative effect of climate on the recruitment patterns of Scots pine and its interactions with local biotic and abiotic variables at different spatial scales. Number of seedlings and saplings was surveyed, and their annual shoot growth measured in 96 plots located across altitudinal gradients in three different regions in the Iberian Peninsula. We found a significant influence of climate on demography and performance of recruits, with a non-linear effect of temperature on the presence of juveniles, and a positive effect of precipitation on their survival. Abundance of juveniles of P. sylvestris that underwent their first summer drought was skewed towards higher altitudes than the altitudinal mean range of the conspecific adults and the optimum elevation for seedlings' emergence. At local level, light availability did not influence juveniles' density, but it enhanced their growth. Biotic interactions were found between juveniles and the herb cover (competition) and between the number of newly emerged seedlings and shrubs (facilitation). Results also highlighted the indirect effect that climate exerts over the local factors, modulating the interactions with the pre-existing vegetation that were more evident at more stressful sites. This multiscale approach improves our understanding of the dynamics of these marginal populations and some management criteria can be inferred to boost their conservation under the current global warming.


Subject(s)
Climate Change , Pinus sylvestris/growth & development , Climate , Ecosystem , Geography , Global Warming , Mediterranean Region , Spain , Temperature , Time Factors , Trees
6.
Glob Chang Biol ; 19(8): 2490-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23572443

ABSTRACT

Predicting climate-driven changes in plant distribution is crucial for biodiversity conservation and management under recent climate change. Climate warming is expected to induce movement of species upslope and towards higher latitudes. However, the mechanisms and physiological processes behind the altitudinal and latitudinal distribution range of a tree species are complex and depend on each tree species features and vary over ontogenetic stages. We investigated the altitudinal distribution differences between juvenile and adult individuals of seven major European tree species along elevational transects covering a wide latitudinal range from southern Spain (37°N) to northern Sweden (67°N). By comparing juvenile and adult distributions (shifts on the optimum position and the range limits) we assessed the response of species to present climate conditions in relation to previous conditions that prevailed when adults were established. Mean temperature increased by 0.86 °C on average at our sites during the last decade compared with previous 30-year period. Only one of the species studied, Abies alba, matched the expected predictions under the observed warming, with a maximum abundance of juveniles at higher altitudes than adults. Three species, Fagus sylvatica, Picea abies and Pinus sylvestris, showed an opposite pattern while for other three species, such as Quercus ilex, Acer pseudoplatanus and Q. petraea, we were no able to detect changes in distribution. These findings are in contrast with theoretical predictions and show that tree responses to climate change are complex and are obscured not only by other environmental factors but also by internal processes related to ontogeny and demography.


Subject(s)
Global Warming , Plant Dispersal , Trees/physiology , Acer/growth & development , Acer/physiology , Altitude , Europe , Fagaceae/growth & development , Fagaceae/physiology , Models, Biological , Pinaceae/growth & development , Pinaceae/physiology , Species Specificity , Time Factors , Trees/growth & development
7.
Conserv Biol ; 24(3): 810-9, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20015262

ABSTRACT

There is an intense debate about the effects of postfire salvage logging versus nonintervention policies on regeneration of forest communities, but scant information from experimental studies is available. We manipulated a burned forest area on a Mediterranean mountain to experimentally analyze the effect of salvage logging on bird-species abundance, diversity, and assemblage composition. We used a randomized block design with three plots of approximately 25 ha each, established along an elevational gradient in a recently burned area in Sierra Nevada Natural and National Park (southeastern Spain). Three replicates of three treatments differing in postfire burned wood management were established per plot: salvage logging, nonintervention, and an intermediate degree of intervention (felling and lopping most of the trees but leaving all the biomass). Starting 1 year after the fire, we used point sampling to monitor bird abundance in each treatment for 2 consecutive years during the breeding and winter seasons (720 censuses total). Postfire burned-wood management altered species assemblages. Salvage logged areas had species typical of open- and early-successional habitats. Bird species that inhabit forests were still present in the unsalvaged treatments even though trees were burned, but were almost absent in salvage-logged areas. Indeed, the main dispersers of mid- and late-successional shrubs and trees, such as thrushes (Turdus spp.) and the European Jay (Garrulus glandarius) were almost restricted to unsalvaged treatments. Salvage logging might thus hamper the natural regeneration of the forest through its impact on assemblages of bird species. Moreover, salvage logging reduced species abundance by 50% and richness by 40%, approximately. The highest diversity at the landscape level (gamma diversity) resulted from a combination of all treatments. Salvage logging may be positive for bird conservation if combined in a mosaic with other, less-aggressive postfire management, but stand-wide management with harvest operations has undesirable conservation effects.


Subject(s)
Birds/classification , Fires , Pinus , Animals , Biodiversity
8.
Oecologia ; 111(4): 443-451, 1997 Aug.
Article in English | MEDLINE | ID: mdl-28308104

ABSTRACT

We have analysed the effect of prey and fertilization by inorganic nutrients on the survival, growth, reproduction (sexual and vegetative) and mucilage secretion of Pinguicula vallisneriifolia (Lentibulariaceae), a carnivorous plant inhabiting rocky substrates of southern Spain. We tested the hypothesis that carnivorous plants are more prey dependent when root access to nutrients is strongly limited by (1) analysing the importance of the carnivorous habit to the fitness of P. vallisneriifolia in its natural rocky habitat, and (2) determining whether the effect of trapped prey varies with soil nutrient levels. Our 2-year experimental results indicated prey to be limiting to P. vallisneriifolia growth on its natural rocky substrate. Animal food supply substantially increased the chance of survival, growth, vegetative propagation, sexual reproductive success and mucilage secretion. The differences between prey levels were more evident at the end of the experiment when all the surviving Prey-exclusion plants had lost weight, and the probability of sexual reproduction and of vegetative propagation by axillary buds had accordingly diminished. Furthermore, there were clear benefits from carnivory at the population level, since both the expected individual life span and the lifetime vegetative and sexual output correlated positively with the quantity of prey trapped. Application of insects to non-fertilized plants stimulated growth, but similar application to fertilized plants grown on a complete nutrient solution failed to enhance growth. There was no obvious benefit from the provision of a balanced mineral nutrient solution (alone or with prey). The greatest absolute growth and sexual and vegetative output resulted from providing a surplus of insects to plants on their natural rocky substrate. The strong dependence of P. vallisneriifolia on prey can therefore be considered a useful preadaptation enabling colonization of rocky substrates.

SELECTION OF CITATIONS
SEARCH DETAIL
...