Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Ecotoxicol Environ Saf ; 37(2): 173-80, 1997 Jul.
Article in English | MEDLINE | ID: mdl-9262957

ABSTRACT

The ecotoxicity of styrene was evaluated in acute toxicity studies of fathead minnows (Pimephales promelas), daphnids (Daphnia magna), amphipods (Hyalella azteca), and freshwater green algae (Selenastrum capricornutum), and a subacute toxicity study of earthworms (Eisenia fostida). Stable exposure levels were maintained in the studies with fathead minnows, daphnids, and amphipods using sealed, flowthrough, serial dilution systems and test vessels. The algae were evaluated in a sealed, static system. The earthworms were exposed in artificial soil which was renewed after 7 days. Styrene concentrations in water and soil were analyzed by gas chromatography with flame ionization detection following extraction into hexane. Test results are based on measured concentrations. Styrene was moderately toxic to fathead minnows, daphnids, and amphipods: fathead minnow: LC50 (96 hr), 10 mg/liter, and NOEC, 4.0 mg/liter; daphnids: EC50 (48 hr), 4.7 mg/liter, and NOEC, 1.9 mg/liter; amphipods: LC50 (96 hr), 9.5 mg/liter, and NOEC, 4.1 mg/liter. Styrene was highly toxic to green algae: EC50 (96 hr), 0.72 mg/liter, and NOEC, 0.063 mg/liter; these effects were found to be algistatic rather than algicidal. Styrene was slightly toxic to earthworms: LC50 (14 days), 120 mg/kg, and NOEC, 44 mg/kg. There was no indication of a concern for chronic toxicity based on these studies. Styrene's potential impact on aquatic and soil environments is significantly mitigated by its volatility and biodegradability.


Subject(s)
Cyprinidae , Ecosystem , Soil Pollutants/toxicity , Styrenes/toxicity , Water Pollutants, Chemical/toxicity , Animals , Chlorophyta/drug effects , Crustacea/drug effects , Daphnia/drug effects , Lethal Dose 50 , Oligochaeta/drug effects , Styrene , Styrenes/analysis
4.
Eur J Appl Physiol Occup Physiol ; 64(3): 228-36, 1992.
Article in English | MEDLINE | ID: mdl-1563368

ABSTRACT

Repetitive static exercise (RSE) is a repetitive condition of partial ischaemia/reperfusion and may therefore be connected to the formation of oxygen-derived free radicals and tissue damage. Seven subjects performed two-legged intermittent knee extension exercise repeating at 10 s on and 10 s off at a target force corresponding to about 30% of the maximal voluntary contraction force. The RSE was continued for 80 min (n = 4) or to fatigue (n = 3). Four of the subjects also performed submaximal dynamic exercise (DE) at an intensity of about 60% maximal oxygen uptake (VO2max) for the same period. Whole body oxygen uptake (VO2) increased gradually with time during RSE (P less than 0.05), indicating a decreased mechanical efficiency. This was further supported by a slow increase in leg blood flow (P less than 0.05) and leg oxygen utilization (n.s.) during RSE. In contrast, prolonged RSE had no effect on VO2 during submaximal cycling. Maximal force (measured in six additional subjects) declined gradually during RSE and was not completely restored after 60 min of recovery. After 20 and 80 min (or at fatigue) RSE phosphocreatine (PC) dropped to 74% and 60% of the initial value, respectively. A similar decrease in PC occurred during DE. Muscle and arterial lactate concentrations remained low during both RSE and DE. The three subjects who were unable to continue RSE for 80 min showed no signs of a more severe energy imbalance than the other subjects. A continuous release of K+ occurred during both RSE and DE.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Muscle Contraction , Periodicity , Adult , Aged , Aged, 80 and over , Blood Glucose/metabolism , Creatine Kinase/blood , Humans , Leg/blood supply , Male , Middle Aged , Muscles/blood supply , Muscles/metabolism , Oxygen Consumption , Phosphocreatine/metabolism , Potassium/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...