Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 140(20): 204711, 2014 May 28.
Article in English | MEDLINE | ID: mdl-24880315

ABSTRACT

The concept of liquid organic hydrogen carriers (LOHC) holds the potential for large scale chemical storage of hydrogen at ambient conditions. Herein, we compare the dehydrogenation and decomposition of three alkylated carbazole-based LOHCs, dodecahydro-N-ethylcarbazole (H12-NEC), dodecahydro-N-propylcarbazole (H12-NPC), and dodecahydro-N-butylcarbazole (H12-NBC), on Pt(111) and on Al2O3-supported Pt nanoparticles. We follow the thermal evolution of these systems quantitatively by in situ high-resolution X-ray photoelectron spectroscopy. We show that on Pt(111) the relevant reaction steps are not affected by the different alkyl substituents: for all LOHCs, stepwise dehydrogenation to NEC, NPC, and NBC is followed by cleavage of the C-N bond of the alkyl chain starting at 380-390 K. On Pt/Al2O3, we discern dealkylation on defect sites already at 350 K, and on ordered, (111)-like facets at 390 K. The dealkylation process at the defects is most pronounced for NEC and least pronounced for NBC.

2.
ACS Catal ; 4(2): 657-665, 2014 Feb 07.
Article in English | MEDLINE | ID: mdl-24527267

ABSTRACT

Liquid organic hydrogen carriers (LOHC) are compounds that enable chemical energy storage through reversible hydrogenation. They are considered a promising technology to decouple energy production and consumption by combining high-energy densities with easy handling. A prominent LOHC is N-ethylcarbazole (NEC), which is reversibly hydrogenated to dodecahydro-N-ethylcarbazole (H12-NEC). We studied the reaction of H12-NEC on Pt(111) under ultrahigh vacuum (UHV) conditions by applying infrared reflection-absorption spectroscopy, synchrotron radiation-based high resolution X-ray photoelectron spectroscopy, and temperature-programmed molecular beam methods. We show that molecular adsorption of H12-NEC on Pt(111) occurs at temperatures between 173 and 223 K, followed by initial C-H bond activation in direct proximity to the N atom. As the first stable dehydrogenation product, we identify octahydro-N-ethylcarbazole (H8-NEC). Dehydrogenation to H8-NEC occurs slowly between 223 and 273 K and much faster above 273 K. Stepwise dehydrogenation to NEC proceeds while heating to 380 K. An undesired side reaction, C-N bond scission, was observed above 390 K. H8-NEC and H8-carbazole are the dominant products desorbing from the surface. Desorption occurs at higher temperatures than H8-NEC formation. We show that desorption and dehydrogenation activity are directly linked to the number of adsorption sites being blocked by reaction intermediates.

3.
J Phys Chem Lett ; 5(8): 1498-504, 2014 Apr 17.
Article in English | MEDLINE | ID: mdl-26269999

ABSTRACT

Hydrogen can be stored conveniently using so-called liquid organic hydrogen carriers (LOHCs), for example, N-ethylcarbazole (NEC), which can be reversibly hydrogenated to dodecahydro-N-ethylcarbazole (H12-NEC). In this study, we focus on the dealkylation of H12-NEC, an undesired side reaction, which competes with dehydrogenation. The structural sensivity of dealkylation was studied by high-resolution X-ray photoelectron spectroscopy (HR-XPS) on Al2O3-supported Pt model catalysts and Pt(111) single crystals. We show that the morphology of the Pt deposit strongly influences LOHC degradation via C-N bond breakage. On smaller, defect-rich Pt particles, the onset of dealkylation is shifted by 90 K to lower temperatures as compared to large, well-shaped particles and well-ordered Pt(111). We attribute these effects to a reduced activation barrier for C-N bond breakage at low-coordinated Pt sites, which are abundant on small Pt aggregates but are rare on large particles and single crystal surfaces.

4.
Phys Chem Chem Phys ; 15(45): 19625-31, 2013 Dec 07.
Article in English | MEDLINE | ID: mdl-24132015

ABSTRACT

The growth and oxidation of graphene supported on Rh(111) was studied in situ by high-resolution X-ray photoelectron spectroscopy. By variation of propene pressure and surface temperature the optimum growth conditions were identified, yielding graphene with low defect density. Oxidation of graphene was studied at temperatures between 600 and 1000 K, at an oxygen pressure of ~2 × 10(-6) mbar. The oxidation follows sigmoidal reaction kinetics. In the beginning, the reaction rate is limited by the number of defects, which represent the active sites for oxygen dissociation. After an induction period, the reaction rate increases and graphene is rapidly removed from the surface by oxidation. For graphene with a high defect density we found that the oxidation is faster. In general, a reduction of the induction period and a faster oxidation occur at higher temperatures.

5.
ChemSusChem ; 6(6): 974-7, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23674265

ABSTRACT

Sloshing hydrogen: Liquid organic hydrogen carriers are high-boiling organic molecules, which can be reversibly hydrogenated and dehydrogenated in catalytic processes and are, therefore, a promising chemical hydrogen storage material. One of the promising candidates is the pair N-ethylcarbazole/perhydro-N-ethylcarbazole (NEC/H12-NEC). The dehydrogenation and possible side reactions on a Pt(111) surface are evaluated in unprecedented detail.


Subject(s)
Carbazoles/chemistry , Platinum/chemistry , Catalysis , Hydrogenation , Surface Properties
6.
J Chem Phys ; 136(9): 094702, 2012 Mar 07.
Article in English | MEDLINE | ID: mdl-22401463

ABSTRACT

We studied the reaction kinetics of sulfur oxidation on the Pd(100) surface by in situ high resolution x-ray photoelectron spectroscopy and ab initio density functional calculations. Isothermal oxidation experiments were performed between 400 and 500 K for small amounts (~0.02 ML) of preadsorbed sulfur, with oxygen in large excess. The main stable reaction intermediate found on the surface is SO(4), with SO(2) and SO(3) being only present in minor amounts. Density-functional calculations depict a reaction energy profile, which explains the sequential formation of SO(2), SO(3), and eventually SO(4), also highlighting that the in-plane formation of SO from S and O adatoms is the rate limiting step. From the experiments we determined the activation energy of the rate limiting step to be 85 ± 6 kJ mol(-1) by Arrhenius analysis, matching the calculated endothermicity of the SO formation.

7.
Chemistry ; 17(41): 11542-52, 2011 Oct 04.
Article in English | MEDLINE | ID: mdl-21953930

ABSTRACT

To elucidate the dehydrogenation mechanism of dodecahydro-N-ethylcarbazole (H(12)-NEC) on supported Pd catalysts, we have performed a model study under ultra high vacuum (UHV) conditions. H(12)-NEC and its final dehydrogenation product, N-ethylcarbazole (NEC), were deposited by physical vapor deposition (PVD) at temperatures between 120 K and 520 K onto a supported model catalyst, which consisted of Pd nanoparticles grown on a well-ordered alumina film on NiAl(110). Adsorption and thermally induced surface reactions were followed by infrared reflection absorption spectroscopy (IRAS) and high-resolution X-ray photoelectron spectroscopy (HR-XPS) in combination with density functional theory (DFT) calculations. It was shown that, at 120 K, H(12)-NEC adsorbs molecularly both on the Al(2)O(3)/NiAl(110) support and on the Pd particles. Initial activation of the molecule occurs through C-H bond scission at the 8a- and 9a-positions of the carbazole skeleton at temperatures above 170 K. Dehydrogenation successively proceeds with increasing temperature. Around 350 K, breakage of one C-N bond occurs accompanied by further dehydrogenation of the carbon skeleton. The decomposition intermediates reside on the surface up to 500 K. At higher temperatures, further decay to small fragments and atomic species is observed. These species block most of the absorption sites on the Pd particles, but can be oxidatively removed by heating in oxygen at 600 K, fully restoring the original adsorption properties of the model catalyst.

8.
Phys Chem Chem Phys ; 13(36): 16227-35, 2011 Sep 28.
Article in English | MEDLINE | ID: mdl-21826326

ABSTRACT

We studied the adsorption and reactivity of SO(2) on clean and oxygen precovered Pd(100) with high resolution X-ray photoelectron spectroscopy and density functional calculations. Upon adsorption at 120 K two different SO(2) species were detected, which were identified as upright-standing and flat-lying molecules by comparing the calculated core level shifts. In agreement with the relative stabilities determined by the calculations the intensities of the photoelectron spectra indicate that the majority species are upright-standing SO(2). Upon heating the quantitative analysis of the data indicates desorption of SO(3) and formation of atomic sulfur. On the oxygen precovered surface small amounts of SO(3) are formed already upon SO(2) adsorption at low temperatures. Upon heating stepwise oxidation of SO(2) to SO(3) and, eventually, to SO(4) is found. Two different SO(4) species were detected, which are assigned to SO(4) bound in the proximity of or remote from oxygen adatoms, according to core level shift estimates.

SELECTION OF CITATIONS
SEARCH DETAIL
...