Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Anal Chem ; 89(4): 2598-2605, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28192935

ABSTRACT

Electrically conducting polymers (ECPs) are one of the most popular types of materials to interface ion-selective membranes (ISMs) with electron-conducting substrates to construct solid-contact ion-selective electrodes (SCISEs). For optimal ion-to-electron transduction and potential stability, the p-doped ECPs with low oxidation potentials such as PPy need to be generally in their conducting form along with providing a sufficiently hydrophobic interface to counteract the aqueous layer formation. The first criterion requires that the ECPs are in their oxidized state, but the high charge density of this state is detrimental for the prevention of the aqueous layer formation. We offer here a solution to this paradox by implementing a highly hydrophobic perfluorinated anion (perfluorooctanesulfonate, PFOS-) as doping ion by which the oxidized form of the ECP becomes hydrophobic. The proof of concept is shown by using polypyrrole (PPy) films doped with PFOS- (PPy-PFOS) as the solid contact in K+-selective SCISEs (K+-SCISE). Prior to applying the plasticized poly(vinyl chloride) ISM, the oxidation state of the electrodeposited PPy-PFOS was adjusted by polarization to the known open-circuit potential of the solid contact in 0.1 M KCl. We show that the prepolarization results in a hydrophobic PPy-PFOS film with a water contact angle of 97 ± 5°, which effectively prevents the aqueous layer formation under the ISM. Under optimal conditions the K+-SCISEs had a very low standard deviation of E0 of only 501.0 ± 0.7 mV that is the best E0 reproducibility reported for ECP-based SCISEs.

2.
Anal Chem ; 88(19): 9850-9855, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27635999

ABSTRACT

An amperometric method is reported that compensates for the interference from marginally discriminated interfering ions when using traditional polymeric ion-selective membrane (ISM) electrodes. The concept involves utilizing two ISMs in a three-compartment electrochemical cell configuration. The two ISMs are identical in composition except for the addition of an ionophore to one of the membranes. Initially, all three compartments contain the same concentration of interfering ion and the membrane does not contain primary ions. Reference electrodes are placed into each of the two outer compartments. At this point, there is no potential difference between the two reference electrodes. We show experimentally and theoretically that, when the concentration of an interfering species is increased in the sample compartment, the phase-boundary potentials of both sample solution|ISMs change similarly. However, when the primary ion is added to the sample, an asymmetry will emerge, and the membrane with the ionophore will exhibit a larger phase-boundary potential change. At low concentrations, the difference in membrane potentials can be too small for reliable potentiometric detection. Current, which can be routinely measured on pA levels, can be used instead to detect the small primary ion concentration changes with a significant lowering of detection limits. The theory of this method is described by Nernst-Planck-Poisson finite element simulations, and both amperometric and potentiometric experimental verification is demonstrated using ammonium ISM. It is shown that amperometric measurements enable 200 nM ammonium to be detected in the presence of 0.1 mM of potassium, detection capability that is not possible via conventional potentiometry.

3.
Proc Natl Acad Sci U S A ; 111(7): 2425-30, 2014 Feb 18.
Article in English | MEDLINE | ID: mdl-24469792

ABSTRACT

Membrane proteins are generally divided into two classes. Integral proteins span the lipid bilayer, and peripheral proteins are located at the membrane surface. Here, we provide evidence for membrane proteins of a third class that stabilize lipid pores, most probably as toroidal structures. We examined mutants of the staphylococcal α-hemolysin pore so severely truncated that the protein cannot span a bilayer. Nonetheless, the doughnut-like structures elicited well-defined transmembrane ionic currents by inducing pore formation in the underlying lipids. The formation of lipid pores, produced here by a structurally defined protein, is supported by the lipid and voltage dependences of pore formation, and by molecular dynamics simulations. We discuss the role of stabilized lipid pores in amyloid disease, the action of antimicrobial peptides, and the assembly of the membrane-attack complexes of the immune system.


Subject(s)
Cell Membrane Permeability/physiology , Lipid Bilayers/chemistry , Membrane Proteins/chemistry , Models, Molecular , Protein Conformation , Bacterial Toxins/chemistry , Bacterial Toxins/metabolism , Hemolysin Proteins/chemistry , Hemolysin Proteins/metabolism , Lipid Bilayers/metabolism , Membrane Proteins/classification , Membrane Proteins/metabolism , Molecular Dynamics Simulation , Mutagenesis , Polymerase Chain Reaction
4.
ACS Nano ; 8(2): 1364-74, 2014 Feb 25.
Article in English | MEDLINE | ID: mdl-24369707

ABSTRACT

Post-transcriptional modifications of the 3'-ends of RNA molecules have a profound impact on their stability and processing in the cell. Uridylation, the addition of uridines to 3'-ends, has recently been found to be an important regulatory signal to stabilize the tagged molecules or to direct them toward degradation. Simple and cost-effective methods for the detection of this post-transcriptional modification are not yet available. Here, we demonstrate the selective and transient binding of 3'-uridylated ssRNAs inside the ß barrel of the staphylococcal α-hemolysin (αHL) nanopore and investigate the molecular basis of uridine recognition by the pore. We show the discrimination of 3'-oligouridine tails on the basis of their lengths and propose the αHL nanopore as a useful sensor for this biologically relevant RNA modification.


Subject(s)
3' Untranslated Regions , Nanopores , Proteins/chemistry , RNA/chemistry , Uridine/chemistry , Binding Sites , RNA Processing, Post-Transcriptional
5.
RSC Adv ; 2(17): 6765-6767, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22888401

ABSTRACT

Herein, we report a new approach to electromodulate the release of NO at physiological levels through polymeric materials from a stable nitrite electrolyte reservoir, with potential application in controlling biofilm formation and clotting on intravascular catheters. The NO flux can be turned 'on' and 'off' electrochemically, on demand.

6.
Anal Chim Acta ; 722: 119-26, 2012 Apr 13.
Article in English | MEDLINE | ID: mdl-22444543

ABSTRACT

Nanopores by providing single molecule detection and manipulation are lately in the forefront of life science and nanotechnology research. While single nanopore sensors can detect the residence of even one molecule or nanoparticle within the nanopore, the analytical significance of this process is often misunderstood. A fundamental problem of nanosensors is that their sensing zone is generally infinitesimal with respect of the probed sample volume. Consequently, the probability to have in extremely diluted solutions target molecules or nanoparticles encountering the nanosensor is low. Thus, even though the sensor by itself has single molecule detection capability the average time frame in which this occurs is by far not irrelevant for the analysis. In this paper we report on random walk simulations to determine the average time (encounter time) needed by a single molecule to encounter a single nanopore sensor. By assigning the simulation environment with real space and time values a semi-empirical equation for expressing the average encounter time in purely diffusive systems is provided. We also show that random walk simulations can be adapted to evaluate the encounter time in the presence of an external force field acting on the target molecule. As practically relevant application the case of electrophoretically driving DNA strands towards the nanopore sensor is presented and a semi-empirical equation for the encounter time is provided.

7.
Electroanalysis ; 24(1): 53-59, 2012 Jan.
Article in English | MEDLINE | ID: mdl-23293506

ABSTRACT

Potentiometric membrane electrodes that respond to heparin and other polyanions were introduced in the early 1990s. Herein, the mechanism of polymer membrane electrode type heparin sensors is revisited. The extraction/diffusion of heparin is studied via both potentiometric and impedance spectroscopic techniques using a pre-fractionated heparin preparation that contains polyanionic species > 10000 Daltons. The reversal in EMF response using this heparin preparation indicates diffusion of higher MW heparin fragments to the backside of the membrane. Diffusion coefficients are calculated using a novel formula derived from the phase boundary potential model and Fick's second law of diffusion. Impedance spectroscopy is also employed to show that high MW heparin species are extracted and diffuse across the PVC membranes.

8.
Anal Chem ; 83(12): 4902-8, 2011 Jun 15.
Article in English | MEDLINE | ID: mdl-21545175

ABSTRACT

A new hyphenated method utilizing FT-IR-attenuated total reflection (ATR) and electrochemical impedance spectroscopy (EIS) is presented to correlate the water uptake with concomitant potential and impedance changes of polymeric coated-wire electrodes (CWEs) and solid-contact ion-selective electrodes (SCISEs). The Ca(2+)-selective silicone rubber (RTV 3140) based SCISEs with poly(3-octylthiophene) (POT) as the solid-contact (SC) showed good correlation between a very low water content at the Pt-coated ZnSe substrate/SC interface and a superior potential stability. This is due to the hydrophobicity of both RTV 3140 and POT and the approximately 2 orders of magnitude lower water diffusion coefficients in POT compared to RTV 3140. Practically no potential drift could be observed during 24 h when unconditioned CaSCISEs were contacted with 10(-3) M CaCl(2), in contrast to the Ca(2+)-selective CWEs with considerably higher water uptake and potential drift. The CaSCISEs had a fast Nernstian response with a detection limit of 8 × 10(-9) M Ca(2+) and a good reproducibility and stability of the standard potential, which indicates that the CaSCISEs does not require any conditioning prior to use.

9.
Anal Chem ; 83(2): 619-24, 2011 Jan 15.
Article in English | MEDLINE | ID: mdl-21230000

ABSTRACT

Amperometric detection of S-nitrosothiols (RSNOs) at submicromolar levels in blood samples is of potential importance for monitoring endothelial function and other disease states that involve changes in physiological nitric oxide (NO) production. It is shown here that the elimination of dissolved oxygen from samples is critical when covalently attached diselenocystamine-based amperometric RSNO sensors are used for practical RSNO measurements. The newest generation of RSNO sensors utilizes an amperometric NO gas sensor with a thin organoselenium modified dialysis membrane mounted at the distal sensing tip. Sample RSNOs are catalytically reduced to NO within the dialysis membrane by the immobilized organoselenium species. In the presence of oxygen, the sensitivity of these sensors for measuring low levels of RSNOs (<µM) is greatly reduced. It is demonstrated that the main scavenger of the generated nitric oxide is not the dissolved oxygen but rather superoxide anion radical generated from the reaction of the reduced organoselenium species (the reactive species in the catalytic redox cycle) and dissolved oxygen. Computer simulations of the response of the RSNO sensor using rate constants and diffusion coefficients for the reactions involved, known from the literature or estimated from fitting to the observed amperometric response curves, as well as the specific geometric dimensions of the RSNO sensor, further support that nitric oxide and superoxide anion radical quickly react resulting in near zero sensor sensitivity toward RSNO concentrations in the submicromolar concentration range. Elimination of oxygen from samples helps improve sensor detection limits to ca. 10 nM levels of RSNOs.


Subject(s)
Biosensing Techniques/methods , Organoselenium Compounds/chemistry , Oxygen/chemistry , S-Nitrosothiols/analysis , Electrochemical Techniques/methods , Electrodes , Models, Theoretical , Nitric Oxide/metabolism , Platinum/chemistry , Superoxides/analysis
10.
Anal Chem ; 81(14): 5925-34, 2009 Jul 15.
Article in English | MEDLINE | ID: mdl-19527006

ABSTRACT

For the first time, FTIR-ATR spectroscopy was used to study the water uptake and its diffusion in ion-selective membranes (ISMs) based on poly(acrylates) (PAs) and silicone rubber (SR), which are emerging materials for the fabrication of ISMs for ultratrace analysis. Three different types of PA membranes were studied, consisting of copolymers of methyl methacrylate with n-butyl acrylate, decyl methacrylate, or isodecyl acrylate. Numerical simulations with the finite difference method showed that in most cases the water uptake of the PA and SR membranes could be described with a model consisting of two diffusion coefficients. The diffusion coefficients of the PA membranes were approximately 1 order of magnitude lower than those of plasticized poly(vinyl chloride) (PVC)-based ISMs and only slightly influenced by the membrane matrix composition. However, the simulations indicated that during longer contact times, the water uptake of PA membranes was considerably higher than that for plasticized PVC membranes. Although the diffusion coefficients of the SR and plasticized PVC membranes were similar, the SR membranes had the lowest water uptake of all membranes. This can be beneficial in preventing the formation of detrimental water layers in all-solid-state ion-selective electrodes. With FTIR-ATR, one can monitor the accumulation of different forms of water, i.e., monomeric, dimeric, clustered, and bulk water.

11.
Anal Chem ; 81(9): 3592-9, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19338286

ABSTRACT

Ion fluxes across polymeric ion-selective membranes are a decisive parameter dictating the lower detection limit of potentiometric ion sensors. An applied current was earlier proposed to counteract such fluxes and reduce the detection limit to ultratrace levels. So far, however, the method has not been used in practical situations since the correct current amplitude requires prior knowledge of the sample composition. This paper explores the use of the stir effect to evaluate the optimal current by theory and experiments. It is shown that the traditionally used steady-state model assuming a uniform distribution of ion exchanger in the membrane, fixed with time, violates the electroneutrality condition. A modified steady-state model is introduced that allows for a concentration tilt of the ion exchanger and predicts that a stir effect can indeed be utilized to find the optimal current. Ideally, by choosing the optimal current and very long measurement times, the thermodynamic detection limit might be obtained. However, in practice the stir effect declines at low concentrations and the conditions are far from steady state. Therefore, the improvement of the lower detection limit achievable by galvanostatic control is only about 1 order of magnitude. A numerical finite-difference approximation is shown to trace the experimental potential responses of silver-selective electrodes well and to reproduce the stir effect adequately, even for different conditioning protocols. The stir effect is successfully used to improve the detection limit of electrodes with ill-optimized inner solutions; however, significant improvements beyond what is commonly feasible by chemical optimization does not seem to be easily achievable. The results indicate that with conventional membranes the possibility of improving the detection limit by current polarization is much more limited than assumed so far.


Subject(s)
Membranes, Artificial , Polymers/chemistry , Potentiometry/methods , Calibration , Electrodes , Reproducibility of Results , Sensitivity and Specificity , Silver/chemistry , Time Factors
12.
Nano Lett ; 7(6): 1609-12, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17488052

ABSTRACT

The inner walls of gold nanotubes, prepared by template synthesis in the nanopores of polycarbonate track etch membranes, have been chemically modified with peptide nucleic acid (PNA) and used for label-free quantification of complementary DNA sequences. Selective binding of DNA to the PNA-modified nanotubes is shown to decrease the flux of optically detected anionic markers through the nanotubes in a concentration-dependent manner. The strong dependence of the biorecognition-modulated ion transport through the nanopores on the ionic strength suggests a dominantly electrostatic exclusion mechanism of the ion flux decrease as a result of DNA binding to the PNA-modified nanopores.


Subject(s)
DNA/chemistry , DNA/genetics , Gold/chemistry , In Situ Hybridization/methods , Nanotubes/ultrastructure , Peptide Nucleic Acids/chemistry , Sequence Analysis, DNA/methods , Crystallization/methods , DNA/ultrastructure , Ion Transport , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Nanotechnology/methods , Nanotubes/chemistry , Particle Size , Peptide Nucleic Acids/ultrastructure , Staining and Labeling , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...