Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Rapid Commun Mass Spectrom ; 17(12): 1240-1246, 2003.
Article in English | MEDLINE | ID: mdl-12811746

ABSTRACT

Fourier transform ion-cyclotron resonance (FTICR) mass spectrometry offers several advantages for the analysis of biological samples, including excellent mass resolution, ultra-high mass measurement accuracy, high sensitivity, and wide mass range. We report the application of a nano-HPLC system coupled to an FTICR mass spectrometer equipped with nanoelectrospray source (nano-HPLC/nano-ESI-FTICRMS) for proteome analysis. Protein identification in proteomics is usually conducted by accurately determining peptide masses resulting from enzymatic protein digests and comparing them with theoretically digested protein sequences from databases. A tryptic in-solution digest of bovine serum albumin was used to optimize experimental conditions and data processing. Spots from Coomassie Blue and silver-stained two-dimensional (2D) gels of human thyroid tissue were excised, in-gel digested with trypsin, and subsequently analyzed by nano-HPLC/nano-ESI-FTICRMS. Additionally, we analyzed 1D-gel bands of membrane preparations of COS-6 cells from African green monkey kidney as an example of more complex protein mixtures. Nano-HPLC was performed using 1-mm reverse-phase C-18 columns for pre-concentration of the samples and reverse-phase C-18 capillary columns for separation, applying water/acetonitrile gradient elution conditions at flow rates of 200 nL/min. Mass measurement accuracies smaller than 3 ppm were routinely obtained. Different methods for processing the raw data were compared in order to identify a maximum number of peptides with the highest possible degree of automation. Parallel identification of proteins from complex mixtures down to low-femtomole levels makes nano-HPLC/nano-ESI-FTICRMS an attractive approach for proteome analysis.


Subject(s)
Microchemistry/methods , Nanotechnology/methods , Proteins/analysis , Proteomics/methods , Spectrometry, Mass, Electrospray Ionization/methods , Animals , COS Cells , Cattle , Chromatography, High Pressure Liquid , Cyclotrons , Electrons , Electrophoresis, Gel, Two-Dimensional , Fourier Analysis , Humans
2.
J Recept Signal Transduct Res ; 23(4): 351-60, 2003.
Article in English | MEDLINE | ID: mdl-14753296

ABSTRACT

Neuropeptide Y (NPY) recognition by the human neuroblastoma cell lines SiMa, Kelly, SH-SY5Y, CHP-234, and MHH-NB-11 was analyzed in radioactive binding assays using tritiated NPY. For the cell lines CHP-234 and MHH-NB-11 binding of [3H]propionyl-NPY was observed with Kd-values of 0.64 +/- 0.07 nM and 0.53 +/- 0.12 nM, respectively, determined by saturation analysis with non-linear regression. The receptor subtype was determined by competition analysis using the subtype selective NPY analogues [Leu31, Pro34]-NPY (NPY-Y1, NPY-Y5), [Ahx(5-24)]-NPY (NPY-Y2), [Ala31, Aib32]-NPY (NPY-Y5), NPY [3-36] (NPY-Y2, NPY-Y5), and NPY [13-36] (NPY-Y2). Both cell lines, CHP-234 and MHH-NB-11, the latter one being characterized for NPY receptors for the first time, showed exclusive expression of NPY-Y2 receptors. In both cell lines binding of NPY induced signal transduction, which was monitored as reduction of forskolin-induced cAMP production in an ELISA.


Subject(s)
Receptors, Neuropeptide Y/biosynthesis , Amino Acid Sequence , Binding, Competitive , Cell Line, Tumor , Cyclic AMP/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Enzyme-Linked Immunosorbent Assay , Humans , Kinetics , Linear Models , Molecular Sequence Data , Peptide Biosynthesis , Peptides/chemistry , Protein Binding , Sequence Homology, Amino Acid , Signal Transduction
3.
J Biol Chem ; 277(13): 11416-22, 2002 Mar 29.
Article in English | MEDLINE | ID: mdl-11756401

ABSTRACT

Neuropeptide Y (NPY) is a 36-amino acid neuropeptide that exerts its activity by at least five different receptor subtypes that belong to the family of G-protein-coupled receptors. We isolated an aptamer directed against NPY from a nuclease-resistant RNA library. Mapping experiments with N-terminally, C-terminally, and centrally truncated analogues of NPY revealed that the aptamer recognizes the C terminus of NPY. Individual replacement of the four arginine residues at positions 19, 25, 33, and 35 by l-alanine showed that arginine 33 is essential for binding. The aptamer does not recognize pancreatic polypeptide, a highly homologous Y4 receptor-specific peptide of the gut. Furthermore, the affinity of the aptamer to the Y5 receptor-selective agonist [Ala(31),Aib(32)]NPY and the Y1/Y5 receptor-binding peptide [Leu(31),Pro(34)]NPY was considerably reduced, whereas Y2 receptor-specific NPY mutants were bound well by the aptamer. Accordingly, the NPY epitope was recognized by the Y2 receptor, and the aptamer was highly similar. This Y2 receptor mimicking effect was further confirmed by competition binding studies. Whereas the aptamer competed with the Y2 receptor for binding of [(3)H]NPY with high affinity, a low affinity displacement of [(3)H]NPY was observed at the Y1 and the Y5 receptors. Consequently, competition at the Y2 receptor occurred with a considerably lower K(i) value compared with the Y1 and Y5 receptors. These results indicate that the aptamer mimics the binding of NPY to the Y2 receptor more closely than to the Y1 and Y5 receptors.


Subject(s)
Molecular Mimicry , Neuropeptide Y/antagonists & inhibitors , Receptors, Neuropeptide Y/metabolism , Amino Acid Sequence , Animals , Base Sequence , DNA Primers , Molecular Sequence Data , Neuropeptide Y/metabolism , RNA/chemistry , RNA/genetics , Receptors, Neuropeptide Y/chemistry , Receptors, Neuropeptide Y/genetics , Sequence Homology, Amino Acid , Swine , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...